FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

CHEMISTRY, PAPER-I

TIME ALLOWED:		D: (PART-J	(PART-I MCQs)		30 MINUTES				MAXIMUM MARKS: 20			
THREE HOURS (PART-II)		I) DT L MC	2 HOURS & 30 MINUTES				MAXIMUM MARKS: 80					
NOT.	minutes.											
	(ii) Use of simple calculator is allowed.											
	(III) Uv	erwriting/cutt	ing of the	e options/a	inswei	rs wii	<u>1 not</u>	be giv	en cre	alt.		
			<u>(PAR</u>	T-I MCQ	s) (C(OMP	ULS	<u>ORY)</u>				
Q.1.	Select the b	est option/ans	wer and fi	ill in the a	pprop	riate	box	on the	Answe	er Shee	t.	(1 x 20=20)
(i)	The geomet	ry associated v	with sp^3d^2	² hybridiza	ation is	s:						
	(a) Octaho	edral (b)	Tetrahee	dral	(c)	Trigo	onal p	lanar	(d)	Trigor	al bip	olanar
(ii)	Which of th	e following m	olecules h	as a dipole	e move	ement	t?					
	(a) CH ₄	(b)	CO ₂		(c)	H_2O	1		(d)	CCl_4		
(iii)	Which of th	e following re	presents th	ne shape o	f NH ₃	mole	ecule	?				
	(a) Trigor	al planar	(b) <i>4</i>	Angular		(c)	Trig	onal Py	ramid	al	(d)	Tetrahedral
(iv)	Which of th	e following is	the larges	t ion?								
	(a) Li ⁺		(b) (Cs ⁺			(c)	Rb^+			(d)	Na ⁺
(v)	Which of th	e following re	present dif	fferent iso	topes o	of the	same	e eleme	ent?			
	1. 12 prote	1. 12 protons, 11 neutrons, 12 electrons										
	2. 11 prote	. 11 protons, 12 neutrons, 11 electrons										
	3. 10 prote	ons, 12 neutro	ns, 12 elec	ctrons								
	4. 11 prote	ons, 12 neutron	ns, 10 elec	ctrons								
	(a) 1 and	5	(b) 2 a	and 4			(c)	2, 3, 4	1 and 5	i	(d)	None of these
(vi)	Which of th	e following re	presents th	ne correct	numbe	er of r	oartic	les in 2	⁷⁹ Se ²⁻	?		
	(a) 34 pro	tons 79 neutr	ons 2 elec	etrons		F	(b)	34 nr	otons	45 neut	rons	32 electrons
	(c) 34 pro	tons, 45 neutr	ons, 2 elec	ctrons			(d)	34 pro	otons,	45 neut	rons,	36 electrons
(vii)	Which one of	of the followir	ig is correc	ct equation	n for th	ne rea	ction	of chlo	orine v	with wat	er?	
	(a)		1	1			(b)	$Cl_{2} +$	- 2H ₂ (O→2H	Cl + I	H.O.
	2CI +	$H_2 O \rightarrow 2HCl$	$1 + \frac{1}{2}O_2$					2	2			2 2
	(c) Cl_2 +	$3H_2O \rightarrow HC$	$O_3 + 5HO_3$	21			(d)	Cl ₂ +	-H ₂ O	→HCl	+ HC)Cl
(viii)	Faraday's la	ws of electrol	ysis are re	lated to th	e:							
	(a) Atomi	c number and	speed of t	he cation			(b)	Atom	ic nun	ber and	l spee	d of the anion
	(c) Quant	ity of electricit	ty and equ	ivalent we	eight o	f the	electi	rolyte	(d)	None	of the	se

CHEMISTRY, PAPER-I

(ix)	When Pt and Co are electrically connected, which one is corroded:						
	(a) Pt (b) Co	(c) Both of these (d) None of these					
(x)	For the reaction $(Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu)$, which of t	he following statements is correct?					
	(a) Zn is dissolved and Cu is deposited	(b) Cu is reduced and Zn is exidized					
	(c) Cu is the cathode and Zn the anode	(d) All statements are correct					
(xi)	What is the pH of 0.0001 M NaOH solution?						
	(a) 4 (b) 10	(c) 5 (d) 14					
(xii)	What is the pH of 1.0×10^{-3} M HCl solution?						
	(a) 10 (b) 30	(c) 3 (d) 0.3					
(xiii)	Which of the following is the correct equilibrium expression $[N_2(g) + 3H_2(g) 2NH_3(g)]?$	ession for the reaction					
	(a) $[2NH_3][N_2 + 3H_2]$	(b) $[2NH_3] / [N_2][3H_2]$					
	(c) $[NH_3]^2 / [N_2][H_2]^3$	(d) $[NH_3]^2 / [N_2] + [H_2]^3$					
(xiv)	Which of the following best describes how a catalyst w	vorks?					
	(a) It changes the potential energies of the reactants a	and products.					
	(b) It decreases the temperature of the reaction which	h leads to a faster rate.					
	(c) It lowers the activation energy for the reaction by	providing a different reaction mechanism.					
	(d) It raises the activation energy for the reaction whi	ich produces a faster rate.					
(xv)	Which of the following will not act as Lewis acid;						
	(a) $AICl_3$ (b) BF_3	(c) FeBr_3 (d) CCl_4					
(xvi)	Which of the following is the strongest acid?						
	(a) HF (b) HCl	(c) HBr (d) HI					
(xvii)	Which of the following could be used for cathodic prot	ection:					
	(a) Al (b) Cd	(c) Cu (d) None of these					
(xviii)	Hybridization of XeF_4 is:						
	(a) $sp^{3}d$ (b) $sp^{2}d^{2}$	(c) $sp^{3} d^{2}$ (d) sp^{3}					
(xix)	Which of the following will increase the rate of the read	ction?					
	(a) Decreased temperature and increased concentration	on of reactants					
	(b) Decreased temperature and decreased concentration	ion of reactants					
	(c) Increased temperature and decreased concentration of reactants						
	(d) Increased temperature and increased concentratio	on of reactants					
(xx)	Silicones are polymeric substances with linkage:						
	(a) $Si - S - Si$ (b) $Si - O - Si$	(c) $Si(CH_3)_4$ (d) $O = Si = O$					

CHEMISTRY, PAPER-I

PART-II

NOTE:(i)		PART-II is to be attempted on separate Answer Book.							
	(ii)	Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL marks							
	(iii)	Periodic Table is attached.							
	(iv)	Extra attempt of any question or any part of the attempted question will not be considered.							
Q.2.	(a)	Explain with suitable examples the difference between electrochemical cell and electrolytic cell?	(07)						
		For the cell, $Ni(s)/Ni^+(aq)//Ag^+(aq)/Ag(s)$, write half cell reactions at each electrode and balanced redox reaction that occurs in the cell.							
	(b)	For the given reaction, Fe ₂ $O_{3(S)} + 2Al_{(S)} \rightarrow Al_2 O_{3(S)} + 2Fe_{(S)}$ the heat of formation of	(03)						
		$\operatorname{Fe}_{2}\operatorname{O}_{3(S)}$ and $\operatorname{Al}_{2}\operatorname{O}_{3(S)}$ are -822.25 and -1669.84 kJ at 298 K, calculate the change in enthalpy.							
	(c)	Write comprehensive note on Fuel cells.	(10)						
Q.3.	(a)	How do buffers resist changes in pH? Write any two applications of buffers in Chemistry?	(05)						
	(b)	Calculate pH of 0.1 N solution of NaOH.	(02)						
	(c)	Give a brief account of Debye-Hükel theory of strong electrolytes?	(05)						
	(d)	What is hydrogen over voltage, how it is related to corrosion rate?	(08)						
Q.4.	(a)	Explain the terms Gibbs free energy, enthalpy and entropy of a reaction. What is the relationship between these terms?	(08)						
	(b)	The heat of reaction for the following reaction at 298K is – 92.466 kJ. $\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ Cl ₂ \rightarrow HCl(g)	(04)						
		Calculate the heat of this reaction at 323 K.							
	(c)	Define heat of combustion. How it is measured experimentally?.	(08)						
Q.5.	(a)	Explain the terms spontaneous and non-spontaneous reactions with suitable examples.	(05)						
-	(b)	Describe moving boundary method for the determination of transference number.	(10)						
	(c)	Write a note on concentration cells.	(05)						
Q.6.	(a)	Describe main features of crystal field theory, How this theory explains colour of coordination complexes?	(10)						
	(b)	Write the electronic configuration for each of the following: Ni ²⁺ , Cu, Mn ²⁺ , Cr ³⁺	(04)						
	(c)	Write coordination and oxidation numbers for the transition metal atom in each of the following coordination compounds.	(06)						

	$K[Ag(CN)_2]$	K[CuCl ₂]	$[MnO_4]^-$
Coordination No			
Oxidation No			

Q.7. (a) State the method by which NaOH is manufactured industrially using NaCl as raw material? (06)

(b) Describe different allotropic forms of carbon? Discuss structure and chemical properties of each. (08)

(c) Discuss chemistry of Hard and Soft water.

Q.8. (a) Write an essay on the Oxides of Nitrogen and Environmental Pollution. (08)

- (b) Write structure and chemical properties of Interhalogen compounds. (07) (06)
- With the help of equations, outline the manufacture of glass. (c)

(06)

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

CHEMISTRY, PAPER-II

TIME ALLOWED:		(PART-I MCQs) 30 MINUTES					MAXIMUM MARKS: 20			
THREE HOURS		JRS	(PART-II) 2 HOURS & 30 MINUTES				JTES MA	MAXIMUM MARKS: 80		
NOT	E: (i)	First at	tempt PAR	AT-I (N	ICQs) on separate A	Answer S	heet which shall be	e taken b	back after 30	
	(ii)	Use of	s. simple calc	ulator	is allowed.					
	(iii)	Overw	riting/cutti	ng of t	the options/answers	s will not	be given credit.			
				(D)		MDI II GA				
				<u>(I</u> F		MIT ULS	<u>OKI)</u>			
Q.1.	Select	the best	option/ansv	ver and	d fill in the appropr	iate box	on the Answer Sh	eet.	(1 x 20=20)	
(i)	Carbon	atoms in	n p-xylene a	are:						
	(a) sp	² hybrid	lized	(b)	sp ³ hybridized	(c)	Sp hybridized	(d) E	Both (a) and (b)	
(ii)	Which	of the fo	llowing sug	gars is :	found in milk?					
	(a) La	actose		(b)	Sucrose	(c)	Maltose	(d)	Fructose	
(iii)	Glucose precipit	e when h ate due	neated with to formation	Bened n of:	ict's reagent (CuSO	₄ , NaOH	, and tartaric acid)	forms a	brick red	
	(a) C	u ₂ O		(b)	Cu(OH) ₂	(c)	Copper tartrate	(d)	None of these	
(iv)	Which	of the fo	llowing car	n not be	e used as solvent in j	polarimet	ry?			
	(a) M	lethanol		(b)	Ethanol	(c)	1-butanol	(d)	2-butanol	
(v)	Polarim	netry is a	technique	to anal	yze:					
	(a) C	hiral cor	npounds	(b)	Unsaturated compoun	nds (c)	Polar compoun	ds (d)	All of these	
(vi)	Which	of the fo	llowing is r	not an a	aromatic compound?	?				
	(a) Py	yrrole	-	(b)	Pyridine	(c)	Furan	(d)	Piperidine	
(vii)	Which	of the fo	llowing is r	not a he	eterocyclic compour	nd?				
			\sim				0			
	(a)					(b)		>		
			IN				\sim			
	(c)					(d)	Π	П		
			U O				∖ s	7		
(viii)	Which	of the fo	llowing wil	l show	optical isomerism?					
	(a) 2,	3-dimet	hylbutane			(b)	3,4-dimethylhexa	ne		
	(c) 3,	4-diethy	lhexane			(d)	1,4-dimethylcycle	ohexane		
(ix)	What ty	pe of re	action takes	s place	when a ketone is tre	eated with	HCN?			
` '	(a) El	- lectrophi	ilic substitu	tion		(b)	Nucleophilic sub	stitution		
	(c) N	ucleophi	ilic addition	1		(d)	Electrophilic add	ition		

CHEMISTRY, PAPER-II

CHEMISTRY, PAPER-II

(xix) The active agent in the nitration of benzene is:

(a)	NO $_2$ ⁻	(b) NO $_{2}^{+}$	(c) NO	(d) HNO $_2$
-----	----------------------	-------------------	--------	--------------

(xx) The most probable intermediate in Favorskii rearrangement is:

(a) Lactone (b) Lactam (c) Cycloprapanone (d) None of these

PART-II

NOTE:(i)	PART-II is to be attempted on separate Answer Book.
(ii)	Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL marks.
(iii)	Extra attempt of any question or any part of the attempted question will not be considered.

- Q.2. (a) Differentiate between Inter-molecular and Intra-molecular hydrogen bonding. Discuss (08) effects of hydrogen bonding on any two properties of organic compounds. Support your answer with suitable examples.
 - (b) Arrange following compounds in decreasing order of their base strength (strongest first). (03) Give a brief explanation in support of your answer:

$$CH_{3}\overset{+}{N}H_{3} \quad CH_{3}NH_{2} \quad \overset{+}{N}H_{4}NH_{3}$$

$$pK_{a} \text{ values} \rightarrow 11 \quad 40 \quad 9 \quad 36 \quad 5$$

(c) How would you account for the following: (06)Picric acid (2,4,6-trinitrophenol) liberates CO₂ from aqueous soulution of i. Na₂ CO₃ but phenol does not? ii. Benzene undergo Friedel Craft alkylation in the presence of Lewis acid while pyridine does not? Benzene is an aromatic compound while cyclooctatraene is nonaromatic? iii. Q.3. Discuss how a catalyst changes the rate and path of the reaction? (a) (06)(b) Reaction of 1, 3-butadiene with HBr gives two products, draw reaction coordinate (07) diagram to illustrate thermodynamic and kinetic products of the reaction. For the following reaction: (c) (07) $CH_3(CH_2)_3Br + OH^- \rightarrow CH_3(CH_2)_3OH + Br^-$ Discuss rate law and various factors that affect the rate of reaction. Starting from benzene how would you prepare the following compounds: Q.4. (a) (06)Benzoic acid, 4-Bromonitobenzene, Maleic anhydride (06)(b) Show reaction of $C_2 H_5$ MgBr with each of the following: i. CH₃CHO followed by hydrolysis ii. $CH_3C \equiv C - H$ followed by reaction with $CH_3 - I$

iii. $CH_3COOC_2H_5$ followed by hydrolysis.

CHEMISTRY, PAPER-II

(c) Assign hybridization at each carbon in the following compound:

	(d)	Suggest two methods to prepare aromatic amines.	(04)				
Q.5.	(a)	Discuss stereoisomerism in compounds having 2-similar asymmetric carbon atoms.	(06)				
	(b)	Draw Fisher projection formulae for the following compounds:	(08)				
		i. R and S 2 - bromopentane					
		ii. R and S 3 - chloro-1-pentene					
		111. R and S 3 - chloro-3-methyloctane					
	(\mathbf{c})	1V. R and S 2 - pentanol What do you understand by the terms 7 and F isomer? Illustrate your answer by quoting suitable	(06)				
	(0)	examples.	(00)				
Q.6.	(a)	(a) Illustrate giving suitable examples the difference between Homogenous and Heterogeneous (06) catalysis.					
	(b)	Outline synthesis of azo dye starting with phenol and a suitable aromatic amine.	(04)				
	(c)	Write notes on the following: (05+ 05	= 10)				
		i. Octane number ii. Catalytic cracking					
Q.7.	Write	structure of product(s) obtained from each of the following reactions: $(2 \times 10^{-1})^{-1}$) =20)				
	i.	$CH_{3}CH_{2}COOH + CH_{3}CH_{2}OH + H_{2}SO_{4} \rightarrow$					
	ii.	$C_6H_5COCH_3+LiAlH_4 \rightarrow$					
	iii.	$C_6H_5COOH+SOCl_2 \rightarrow$					
	iv.	$(CH_3)_3 CBr + NaOH(aq) \rightarrow$					
	v.	$C_{6}H_{5}NH_{2} + NaNO_{2} + HCl (conc) \rightarrow$					
	vi.	$CH_{3}CH_{2}COCH_{3} \xrightarrow{1)C_{2}H_{3}MgBr} \rightarrow$					
	vii)	$C_6H_5NO_2 + Sn/HCl \rightarrow$					
	viii)	$C_{6}H_{6} + Na/NH_{3} \rightarrow$					
	ix)	$CH_{3}CH = CH_{2} + HBr \rightarrow$					
	x)	$CH_3COCH_3 + NH_2OH \rightarrow$					
Q.8 .	(a)	Write main steps in the formation of following polymers: $(03 + 03)$	= 06)				
C		i. Nylon 6,6 and Polyester via Condensation Polymerization.					
		ii. Polyethlene via Free Radical Polymerization.					
	(b)	What are alkaloids, describe chemical properties and structure of any two alkaloids.	(07)				
	(c)	Differentiate between oil, fat and wax. Draw structure of triglyceride containing oleic acid	(06)				
		$[CH_3(CH_2)_7 CH = CH (CH_2)_7 COOH]$ as fatty acid and write reaction triglyceride with					
		H_2 /Ni followed by NaOH(aq).					

(04)