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Teacher’s Preface

Why another textbook? The statistical community generally agrees that at the
upper undergraduate level, or the beginning master's level, students of statistics
should begin to study the mathematical methods of the field. We assume that by
then they will have studied the usual two-year college sequence, including calculus
through multiple integrals and the basics of matrix algebra. Therefore, they are
ready to learn the foundations of their subject, in much more depth than is usual
in an applied, “cookbook,” introduction to statistical methodology.

There are a number of well-written, widely used textbooks for such a course.
These seem to reflect a consensus for what needs to be taught and how it shoul
be taught. So, why do we need yet another book for this spot in the curriculum?

| learned mathematical statistics with the help of the standard texts. Since then,
| have taught this course and similar ones many times, at several different universi-
ties, using well-thought-of textbooks. But from the beginning, | felt that something
was wrong. It took me several years to articulate the problem, and many more to
assemble my solution into the book you have in your hand.

You see, | spend the rest of my day in statistical consulting and statistical re-
search. | should have been preparing my mathematical statistics students to joir
me in this exciting work. But from seeing what the better graduating seniors and
beginning graduate students usually knew, | concluded that the standard curricu:
lum was not teaching them to be sophisticated citizens of the statistical community.
These able students seemed to be well informed about a set of narrow, technice
issues and at the same time embarrassingly lacking in any understanding of mor:
fundamental matters. For example, many of them could discourse learnedly on
which sources of variation were testable in complicated linear models. But they
became tongue-tied when asked to explain, in English, what the presence of som
interaction meant for the real-world experiment under discussion!
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What went wrong? | have come to believe that the problem lies in our history.
The first modern textbooks were written in the 1950s. This was at the end of
the Heroic Age of statistics, roughly, the first half of the twentieth century. Two
bodies of magnificent achievements mark that era. The first, identified with Student,
Fisher, Neyman, Pearson, and many others, developed the philosophy and forme
methodology of what we now catlassical inference. The analysis of scientific
experiments became so straightforward that these techniques swept the world o
applications. Many of our clients today seem to believe that these metiheds
statistics.

The second, associated with Liapunov, Kolmogorov, and many others, was the
formal mathematicization of probability and statistics. These researchers provec
precise central limittheorems, strong laws of large numbers, and laws of the iteratec
logarithm (let me call thesadvanced asymptotics). They axiomatized probability
theory and placed distribution theory on a rigorous foundation, using Lebesgue
integration and measure theory.

By the 1950s, statisticians were dazzled by these achievements, and to som
extent we still are. The standard textbooks of mathematical statistics show it.
Unfortunately, this causes problems for teachers. Measure theory and advance
asymptotics are still well beyond the sophistication of most undergraduates, so we
cannotreally teach them at this level. Furthermore, too much classical inference
leads us to neglect the preceding two centuries of powerful but less formal meth-
ods, not to mention the broad advances of the last 50 years: Bayesian inference
conditional inference, likelihood-based inference, and so forth.

So the standard textbooks start with long, dry, introductions to abstract probabil-
ity and distribution theory, almost devoid of statistical motivations and examples
(poker problems?!). Thenthere is a frantic rush, again largely unmotivated, to intro-
duce exactly those distributions that will be needed for classical inference. Finally,
two-thirds of the way through, the first real statistical applications appear—means
tests, one-way ANOVA, etc.—but rigidly confined within the classical inferential
framework. (An early reader of the manuscript called this “the cult of {test.”)
Finally, in perhaps Chapter 14, the books get to linear regression. Now, regressior
is 200 years old, easy, intuitive, and incredibly useful. Unfortunately, it has been
made very difficult: “conditioning of multivariate Gaussian distributions” as one
cultist put it. Fortunately, it appears so late in the term that it gets omitted anyway.

We distort the details of teaching, too, by our obsession with graduate-level
rigor. Large-sample theory is at the heart of statistical thinking, but we are afraid
to touch it. “Asymptotics consists of corollaries to the central limit theorem,” as
another cultist puts it. We seem to have forgotten that 200 years of what | shall
call elementary asymptotics preceded Liapunov’s work. Furthermore, the fear of
saying anything that will have to be modified later (in graduate classes that assume
measure theory) forces undergraduate mathematical statistics texts to include ver
little real mathematics.

As a result, most of these standard texts are hardly different from the cookbooks,
with a few integrals tossed in for flavor, like jaldp®ebits in cornbread. Others are
spiced with definitions and theorems hedged about with very technical conditions,
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which are never motivated, explained, or applied (remember “regularity condi-

tions”?). Mathematical proofs, surely a basic tool for understanding, are confined
to a scattering of places, chosen apparently because the arguments are easy a
“elegant.” Elsewhere, the demoralizing refrain becomes “the proof is beyond the
scope of this course.”

How isthisbook different? In short, this book is intended to teach students to
domathematical statistics, not just to appreciate it. Therefore, | have redesigned the
course from first principles. If you are familiar with a standard textbook on the sub-
ject and you open this one at random, you are very likely to find either a surprising
topic or an unexpected treatment or placement of a standard topic. But everything
is here for a reason, and its order of appearance has been carefully chosen.

First, as the subtitle implies, the treatmentumfied. You will find here no
artificial separation of probability from statistics, distribution theory from infer-
ence, or estimation from hypothesis testing. | treat probability as a mathematical
handmaiden of statistics. It is developed, carefully, as it is needed. A statistical
motivation for each aspect of probability theory is therefore provided.

Second, | have updated the range of subjects covered. You will encounter in-
troductions to such important modern topics as loglinear models for contingency
tables and logistic regression models (very early in the book!), finite population
sampling, branching processes, and small-sample asymptotics.

More important are the matters | emphasize systematio&ymptotics is a
major theme of this book. Many large-sample results are not difficult and quite
appropriate to an undergraduate course. For example, | had always taught that witl
“large n, small p” one may use the Poisson approximation to binomial probabil-
ities. Then | would be embarrassed when a student asked me exactly when thi
worked. So we derive here a simple, useful error bound that answers this question
Naturally, a full modern central limit theorem is mathematically above the level of
this course. But a great number of useful yet more elementary normal limit results
exist, and many are derived here.

| emphasize those methods and concepts that are most useful in statistics i
the broad sense. For examptisstribution theory is motivated by detailed study
of the most widely useful families of random variables. Classical estimation and
hypothesis testing are still dealt with, but as applications of these general tools.
Simultaneously, Bayesian, conditional, and other styles of inference are introducec

as well.
The standard textbooks, unfortunately, tend to introduce very obscure and ab-

stract subjects “cold” (where did a horrible expression %}ge—xz/z come from?),
then only belatedly get around to motivating them and giving examples. Here we
insist onconcreteness. The book precedes each new topic with a relevant statistical
problem. We introduce abstract concepts gradually, working from the special to
the general. Atthe same time, each new technique is applied as widely as possible
Thus, every chapter is quite broad, touching on many connections with its main
topics.

The book’s attitude toward mathematics may surprise you: We take it seriously.
Our students may not know measure theory, but they do know an enormous amoun
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of useful mathematics. This text uses what they do know and teaches them more
We aim for reasonableompleteness; Every formula is derived, every property

is proved (often, students are asked to complete the arguments themselves &
exercises). The level of mathematical precision and generality is appropriate to &
serious upper-level undergraduate course.

At the same time, students are not expected to memorize exotic technicalities,
relevant only in graduate school. For example, the book does not burden them with
the infamous “triple” definition of a random variable; a less obscure definition is
adequate for our work here. (Those students who go on to graduate mathematice
statistics courses will be just the ones who will have no trouble switching to
the more abstract point of view later.) Furthermore, we emphasize mathematical
directness: Those short, elegant proofs so prized by professors are often here
replaced by slightly longer but more constructive demonstrations. Our goal is to
stimulate understanding, not to dazzle with our brilliance.

What isin the book? These pedagogical principles impose an unconventional
order of topics. Let me take you on a brief tour of the book:

The “Getting Started” chapter motivates the study of statistics, then prepares
the student for hands-on involvement: completing proofs and derivations as well
as working problems.

Chapter 1 adopts an attitude right aw&atistics precedes probability. That
is, models for important phenomena are more important than models for mea-
surement and sampling error. The first two chapters do not mention probability.
We start with the linear data-summary models that make up so much of statisti-
cal practice: one-way layouts and factorial models. Fundamental concepts such a
additivity and interaction appear naturally. The simplest linear regression models
follow by interpolation. Then we construct simple contingency-table models for
counting experiments and thereby discover independence and association. The
we take logarithms, to derive loglinear models for contingency tables (which are
strikingly parallel to our linear models). Again, logistic regression models arise
by interpolation. In this chapter, of course, we restrict ourselves to cases for which
reasonable parameter estimates are obvious.

Chapter 2 shows how to estimate ANOVA and regression models by the ancient,
intuitive method of least squares. We emphasize geometrical interpolation of the
method—shortest Euclidean distance. This motivates sample variance, covariance
and correlation. Decomposition of the sum of squares in ANOVA and insight into
degrees of freedom follow naturally.

That is as far as we can go without models for errors, so Chapter 3 begins
with a conventional introduction to combinatorial probability. It is, however, very
concrete: We draw marbles from urns. Rather than treat conditional probability
as a later, artificially difficult topic, we start with the obvioudi probabilities
are conditional. It is just that a few of them are conditional on a whole sample
space. Then the first asymptotic result is obtained, to aid in the understanding of
the famous “birthday problem.” This leads to insight into the difference between
finite population and infinite population sampling.
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Chapter 4 uses geometrical examples to introduce continuous probability mod-
els. Then we generalize to abstract probability. The axioms we use correspond tc
how one actually calculates probability. We go on to general discrete probability,
and Bayes'’s theorem. The chapter ends with an elementary introduction to Borel
algebra as a basis for continuous probabilities.

Chapter 5 introduces discrete random variables. We start with finite popula-
tion sampling, in particular, theegative hypergeometric family. You may not
be familiar with this family, but the reasons to be interested are numerous: (1)
Many common random variables (binomial, negative binomial, Poisson, uniform,
gamma, beta, and normal) are asymptotic limits of this family; (2) it possesses
in transparent ways the symmetries and dualities of those families; and (3) it be-
comes particularly easy for the student to carry out his own simulations, via urn
models. Then the Fisher exact test gives us the first example of an hypothesis tes
for independence in the 2 2 tables we studied in Chapter 1. We introduce the
expectation of discrete random variables as a generalization of the average of :
finite population. Finally, we give the first estimates for unknown parameters and
confidence bounds for them.

Chapter 6 introduces the geometric, negative binomial, binomial, and Poisson
families. We discover that the first three arise as asymptotic limits in the negative
hypergeometric family and also as sequences of Bernoulli experiments. Thus,
we have related finite and infinite population sampling. We investigate just when
the Poisson family may be used as an asymptotic approximation in the binomial
and negative binomial families. General discrete expectations and the populatior
variance are then introduced. Confidence intervals and two-sided hypothesis test
provide natural applications.

Chapter 7 introduces random vectors and random samples. Here is where
marginal and conditional distributions appear, and from these, population covari-
ance and correlation. This tells us some things about the distribution of the sample
mean and variance, and leads to the first laws of large numbers. The study of con
ditional distributions permits the first examples of parametric Bayesian inference.

Chapter 8 investigates parameter estimation and evaluation of fit in complicated
discrete models. We introduce the discrete likelihood and the log-likelihood ratio
statistic. This turns out often to be asymptotically equivalent to Pearson’s chi-
squared statistic, butitis much more generally useful. Then we introduce maximum
likelihood estimation and apply it to loglinear contingency table models; estimates
are computed by iterative proportional fitting. We estimate linear logistic models
by maximum likelihood, evaluated by Newton’s method.

Chapter 9 constructs the Poisson process, from which we obtain the gamme
family. Then a Dirichlet process is constructed, from which we get the beta family.
Connections between these two families are explored. The continuous version o
the likelihood ratio is introduced, and we use it to establish the Neyman—Pearsor
lemma.

Chapter 10 defines the general quantile function of a random variable, by asking
how we might simulate it. Then we may define the expectation of any random
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variable as the integral of that quantile function, using only elementary calculus.
Next, we derive the standard normal distribution as an asymptotic limit of the
gamma family. Stirling’s formula is a wonderful bit of gravy from this argument.
By duality, the normal distribution is also an asymptotic limitin the Poisson family.

Chapter 11 develops multivariate absolutely continuous random variable theory.
The first family we study is the joint distribution of several uniform order statistics.
We then find the chi-squared distribution and show it to be a large-sample limit of
the chi-squared statistic from categorical data analysis. Duality and conditioning
arguments lead to bivariate normal distributions and to asymptotic normality of
several common families.

Chapter 12 derives the null distributions of the R-squared and F statistics from
least-squares theory, on the surprisingly weak assumption that errors are spheri
cally distributed. We notice then that maximum likelihood estimates for normal
error models are least-squares. Parameter estimates for the general linear mod
and their variances are obtained. We show that these are best linear unbiased vi
the Gauss-Markov theorem. The information inequality is then derived as a first
step to understanding why maximum likelihood estimates are so often good.

Chapter 13 begins to view random variables from alternative mathematical rep-
resentations. First, we study the probability generating function, using the concrete
motivation of finding the compound distributions that appear in branching pro-
cesses. The moment generating function may now be motivated concretely, for
positive random variables, by comparison with negative exponential variables. We
then suggest (incompletely, of course) how it may be used to derive some limit
theorems. We then introduce exponential families, emphasizing how they capture
common features and calculations for many of our favorite families. We finish
with an introduction to a lively modern topic: probability approximation by small-
sample asymptotics. This applies beautifully all the tools developed earlier in the
chapter.

Fitting thebook toyour course. There are, of course, alternative paths through
the material if you have different goals for your students. A shorter course in
probability and distribution theory may be taught by skipping lightly over those
chapters that emphasize data modeling and estimation: Chapters 1,2,and 8,and 1
Later sections in other chapters, which investigate methods of statistical inference
might also be deemphasized.

At the opposite extreme, a sophisticated sequence in applied statistics may stal
with this material. Early parts of Chapter 1 could be supplemented by a lecture on
statistical graphics and exploratory data analysis. Chapter 8 might be followed by
the study of more complicated contingency table models. Then Chapter 12 lead:
naturally into a fuller treatment of inference in the linear model. The course may
be supplemented throughout with tutorials on how to use computer packages tc
draw better graphs and carry out computations with more elaborate models anc
larger data sets.

Certain sections, marked with an asterisk (*), may be delayed until later if the
instructor wishes at relatively little cost to continuity. Thame to Review list at
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the beginning of each chapter should serve to warn you when to return to these
matters.
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Getting Started

Why Study Statistics?

We have all been exposed to the popular notion that statistics is about numbers the
are deadly-dull, and perhaps intentionally misleading. You will quickly discover
in this course that the opposite is the case: Statistics is the science of extracting
useful (and therefore interesting) numbers from the world; and the statistician is
committed to forcing these numbers to reveal the truth. Therefore, statistics has
become an essential tool of modern civilization. For example:

(1) In the early nineteenth century, astronomers observed their first asteroid,
Ceres. It then quickly disappeared into the sun’s glare, and there was some douk
that it could be found again in the foreseeable future, since it would have moved
along in its (unknown) orbit. But the great mathematician Carl Friedrich Gauss
managed to compute the orbit of Ceres, using those observations that had bee
made before it disappeared. He then told observers where to look for it some
months hence. The asteroid was found where he had predicted it would be, anc
Gauss became one of the most respected scientists of his day.

Historians have emphasized Gauss’s mathematical achievement in using a fev
accurately observed positions of Ceres to discover its overall orbit, using the com-
plicated equations of celestial mechanics. But that is not all that Gauss did. He
started with a somewhat larger number of not-very-accurate observations of the
positions of Ceres. Telescopes, observers, and especially clocks were not as rel
able in those days as we would now expect them to be. So the observations he ha
to work with, if plotted on a chart of the sky, do not show a realistically smooth
orbit, but instead bounce around a bit. Fortunately, Gauss was one of the inventor:
of a marvelous new statistical technique, the methdeast squares, that takes a
number of imperfect observations and reduces them to a few, more precise, num
bers characterizing the orbit. So Gauss’s technical achievement was twofold; anc
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one aspect of it was a statistical method that has been enormously valuable eve
since, throughout science.

(2) In his biography of Richard Feynman, James Gleick observed that we would
now be amazed, and perhaps appalled, that after Alexander Fleming'’s discovery o
the first antibiotic, penicillin, it took most of a generation before the drug became a
standard treatment for deadly diseases. The process started with Fleming’s repol
about bacteria in petri dishes, which led to an attempt to use penicillin on a sick
human being, and evolved into the reports by a number of physicians on how well
penicillin seemed to have worked for their patients. Finally, the reputation of the
drug in the medical community had become so overwhelmingly favorable that
pharmaceutical companies took the risk of gearing up for mass production.

This process was so slow because there was no agreement in the scientific con
munity on what a sensible, orderly way to evaluate new drugs might be. After
all, worthless drugs are being invented all the time. Because some people recove
spontaneously, while others fail to respond to even the most promising drugs,
good and bad drugs are always difficult to tell apart. In the same years medical re-
searchers were studying penicillin, though, statisticians were inventing techniques
of experimental design, inspired by agricultural research. These were precisely the
disciplined, reliable methods that drug-testing needed. Today, new drugs are ex:
pected to submit teontrolled, randomized experiments that will, in a reasonably
short time, lead to sensible decisions about their clinical value.

(3) Every ten years, the United States carries out a national census. Believe i
or not, this process at its heart has very little to do with modern statistics. Since
the idea is to collect and organize a basic set of facts abeoybody, the main
skills involved are those of librarians and geographers. However, there are known
imperfections in the census: For example, despite its ambitions, it always misses ¢
certain modest percentage of the American population. People would like to have
some idea how large thimdercount is; both so we can estimate the true totals,
and also discover how to make future censuses more accurate.

If you think about it, the census itself tells you nothing about its own accuracy
(how can it possibly include the information that so-and-so was missed?). But
statisticians have developed techniques for parallel, smaller experiments, callec
sample surveys, that can provide such information. These are ways of collecting
information about relatively small numbers of people that allow reasonable state-
ments to be made about people in general. Such conclusions are not perfecth
accurate, of course, but our statistical methods include ways of estimating just
how accurate the conclusions probably are. If you know how good a number is,
you can use it with proper care.

One simple way to estimate the undercount would be to do a very thorough
recountin a set of small areas chosen somehow to be representative of the countr
atlarge. By comparing the results to the original census, you could see what portion
of the people were missed the first time. Then you would conjecture that this might
be close to the national undercount rate. | am sure you can see problems with thit
approach; but more sophisticated surveys of this sort have promise, and are in fac
used to estimate the undercount.
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So statistics today provides a set of valuable tools for dealing with some of the un-
certainties of life. You will not be surprised to hear that statistics is a mathematical
subject: Mathematics was used to invent these methods and is therefore necessa
for any deep understanding of them. Furthermore, new statistical techniques mus
be developed all the time to deal with new problems. Again, mathematics is re-
quired. Statistics courses more elementary than this one often try to avoid suct
matters, hoping that the student will never encounter a statistical problem that
requires novel insights or methods.

But this book is for students who will be the masters of statistical technology,
not its slaves. Its subject is “mathematical statistics,” or sometimes “theoretical
statistics.” The methods of mathematics will be in constant use. We assume tha
you have had a standard calculus sequence, including an introduction to multi-
ple integrals, and the rudiments of matrix algebra. You may find that you do not
really know these subjects as well as you thought you did, through lack of inter-
esting applications. Taking this course will solve that problem, since there is no
substitute for incisive examples, and for practice. Each chapter begins with some
recommendations of topics to review.

How to Read This Book

Now that you have decided to study mathematical statistics, you are probably
wondering what you will have to do to master the course. If you have had other
applied mathematics courses, you have probably cometo realize that the experienc
is not much like studying history, and even less like studying a foreign language.
Let me illustrate:

Example. In 1900, the English mathematical biologist Karl Pearson proposed the
formulax? = Y, M It is now called Pearson'’s chi-squared, because, fol-

lowing an old convention, the Greek lettehi is to the left of the equal sign. It

is a measure of the difference between a set of coOntsbserved in a survey or
experiment and a corresponding set of countexpected under some hypothesis
about how the survey or experiment should come out. Several years ago, Peat
son’s formula was on a widely publicized list of the 100 most important scientific

discoveries of the twentieth century.

Everything here is useful knowledge, and | would hope that at the end of your
statistical education you would know most of the information in the preceding
paragraph. But so far this is the sort of thing you get from history classes (the
when, where, and who in the first sentence, and the comment about its significanc
in the last sentence) and from foreign language classes (the formula to memorize
and the definitions of the parts).

But since this is an applied mathematics course, | am sure you realize that there
are other things about Pearson'’s chi-squared that you need to learn. To start with
how do you apply this formula to the real world? For example, | want to know



4 Getting Started

whether a coin that is to be used to choose goals in football games is fair. | toss
it 100 times; it lands “heads” 43 times and “tails” 57 times. But my idea of a fair
coin would land heads about 50 times and tails 50 times. Were my counts so far
from fair that | now have evidence against the coin being balanced? This, you
will learn, is a typical application of Pearson’s chi-squared; it is the procedure
described so abstractly in the sentence about observed and expected counts. Tl
O;'s are 43 and 57, and th&'s are 50 and 50. You learned in earlier courses that
3 (capital sigma) means “add up the cases,jdo= “3-50F | G7-50F _ 1 g,

In very elementary statistical courses you then learn to consult a table or computel
program and report on its authority that this is not a very big value; and so there is
little reason to doubt that your coin is fair.

Throughout this book, you will encounter worked numerical examples of what to
do with proposed procedures, under the heaBixgmple. | have tried to illustrate
in this way almost every method discussed, some several times. You should realize
that these are not just motivational: They are intended to begin your process of
learning how to perform statistical analyses for yourself. Every time you encounter
an example you should first read it carefully to try to understand why the given
method may be appropriate to the real-world situation. Then you should try to
reproduce my mathematics, and my arithmetic, for yourself. (If you find a mistake,
please write to me.) In this way, you get the flavor of how the method is applied.

Then you will turn to theExercises at the end of that chapter and try some
problems, with numerical data, that use the same method. This may be harder tha
you expect, because you may not recognize immediately what the new applicatior
has to do with the method you are learning. Instead of coin-tossing, it might involve,
for example, a consumer survey about lipstick preferences. The fact that this still
involves comparing observed to expected counts, and so Pearson’s chi-square
applies, is a subtle one. Doing problems on your own is the best way to gain
experience at making such judgments.

The exercises, by the way, are in two sections in each chapter. The first set
consists of fairly straightforward applications and chances to fill in omitted details.
There are some hints and numerical answers to these in an appendix. Itis importar
not to look at these answers until you have an answer you are happy with and wish
to double-check; or until you are thoroughly stuck. Working backwards from a
known answer teaches you much, much less than doing it the right way. The next
section, calledupplementary Exercises, consists of additional problems of the
same kind, for valuable extra practice plus opportunities to develop for yourself
interesting and useful extensions of the ideas you have been studying.

If this were a more elementary course, and one that concentrated on applications
this would be all there was to learning the material. But we have ducked some
important questions, such as, where in the world did Pearson get that formula?
The answer is, heerived it, from statistical methods he already knew, using
ingenuity and mathematics. You might think that such questions are of mainly
historical interest. Remember, though, that it is not obvious arypne would
propose the chi-squared method. The question should perhaps be, why would :
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reasonable person use that formula? In this book you will find not one, but three
mathematical derivations of the formula (none of them exactly like Pearson’s).
That might seem very odd, a waste of time. | suppose it would be, if the purpose
of the derivation were just to reassure you that somebody, somewhere (the authol
perhaps), knows why we use Pearson’s formula. However, the real reason is tc
learn the ways of thinking that inspire our use of the method. The three derivations
show three different aspects of that thinking. My hope is that after studying all
three, you will have a pretty good idea of when you might want to use Pearson’s
formula.

So, when you encounter one of the many derivations in the text, read it, slowly
and repeatedly, until you believe you understand in detail how it works. Then
close your book, and try to carry out that derivation yourself in your own manner.
After you have succeeded, turn again to the exercises. There you may be aske
to discover for yourself yet another way of obtaining that same method. Or you
may be asked to derive a related formula. After you have done all this (it will
often take quite a while), you will find that you understand far better than before
why statisticians do what they do. In fact, those applied problems involving data
and numbers will have become much easier to connect to mathematical methods
Furthermore, you will find that complicated equations, because they are no longel
in a foreign language, are much easier to remember than they used to be.

The exercises that require you to derive new formulas give away an impor-
tant secret: Statisticians do not yet know the answer to every statistical question
Therefore, competent working statisticians spend a good deal of their time invent-
ing new methods, inspired by methods they already know (just as Pearson did).
So you should tackle with gusto those exercises that lead you to develop method:
new to you, because they give you practice with the creative aspect of statistics.

For example, many Pearson-type problems have the property that the total of all
the observed counts in the problem is equal to the total of all the expected counts
In the coin-tossing problem, they both summed to 100. This is usually no accident:
When we decided what it meant for a coin to be fair, we split the known total of
100 evenly between heads and tails. The general mathematical statement of thi
fact says thad ", O; = >, E; = n, wheren is just a convenient symbol for the
total count. We are going to show that Pearson’s chi-squared reduces to a simple
formula in this case. First, we expand the square in the numerator:

2 (0i —Ef < (0F —20,E; + E})
X _Z E; _Z E; '

Now, remembering that the summation sign just means “add up all the cases,”
let us sum each of the three terms in the numerator separately (since the order c
addition in a finite sum never matters):

s (0?2 —20,E;+E?) < O? O.E; E}
X _Z E; _ZE_ZZ E; +XZ:E

i
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In the Iast two termskg’s in the numerator and denominator cancel, so we get

x%= Zl —+—2),0;+ ), E;. But we have decided to concentrate on the case
where the total of observed and expected counts arerhath

This last is a new, simplified formula for Pearson’s chi-squared, which works in
an important special case. (Itis a formula that every statistician used to know; but
for some reason it is rarely mentioned in modern applied statistics books.)

| hope you have checked my algebra carefully here. The earliest derivations in
the book are explained in about this much detail. Later on, as you become more
skilled, easy steps are skipped, so that there will be a bit more work for you to do.
It will continue to be important that you check all the math for yourself. In fact,
omitted steps are often left as exercises.

The last comment | made in working with the coin-tossing experiment was that
we would probably decide that 1.96 was not a very large value of chi-squared.
Why? This happens to be the hardest question we have yet dealt with. To inter-
pret that number, we will need to investigate deep mathematical properties of the
chi-squared statistic. A large percentage of our effort in this course, thoroughly
entangled with deriving statistical methods, will be to use mathematics to discover
important working characteristics of those methods. When we have found some
properties that will be used later in a chapter, we distinguish théPnamositions,
as is often done in mathematics texts. If the properties are so important that they
will be extensively used in later chapters, we call th€heorems. We will use
here a convention rigorously obeyed by working mathematicians (but not by math
books): Theorems are given a name, and are later referred to by that name. (£
famous example is Fermat'’s last theorem.)

Just as we will derive all our methods, we willove all our propositions and
theorems. Usually, the proof will be in the discussion leading up to the statement of
the result; but sometimes it will be immediately following, labeRraof. Often,
students have painful memories of proving things from earlier math courses. You
might have come away with the idea that you are supposed to provide a tangle of
words like “therefore,” “without loss of generality,” and “by induction”; then at the
end you complete the ritual by invoking the magical formula “QED.” Actually, a
mathematical proof is nothing more than an explanation of why something is true,
which is supposed to be clear enough to convince an intelligent, skeptical listener.
We have proofs for the same reason we have derivations of formulas: so you will
understand where the theorem comes from and have some idea how to find fo
yourself similar but novel facts that you may need later.

You should study the mathematical proofs just as you study the derivations.
When you encounter a proposition, you should read carefully through my argument
until you are convinced that the statementis true. Then close the book, and convince
someone else. At that point, turn to the exercises, and work on related problems
that say something like “show” or “demonstrate” or “prove” (which all mean the
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same thing). Your job will again be, first, to persuade yourself that the claim is
valid (if it is not, please write to me), and, second, to write down an explanation
clear enough to convince other people.

As you begin to tackle the exercises in this book, you will surely begin to won-
der how much electronic computing help you should use. The general principle
will be this: When you are first learning any subject, you should get your hands
very dirty. In the Exercises, | am imagining that you have an ordinary scientific
calculator or a fairly low-level mathematics program on your computer handy at
all times. A few of the Supplementary Exercises are better tackled by using more
sophisticated computing tools—Fortran, Basic, Pascal, C, a spreadsheet progran
or Mathematica, for example. At this point you should avoid using any tool that
incorporates the statistical procedures you are trying to understand—such as ste
tistical functions in a calculator or spreadsheet, or statistical packages. There will
be plenty of time for learning these wonderful timesavers later, after you have
mastered mathematical statistics.

You may have noticed that this course has an important characteristic in common
with other math and science courses. In many other fields, your job seems to be
to believe everything the professor or textbook says; the best student is the mos
gullible. In this course, the best students are the most skeptical—so long as they
are willing to check things for themselves.

So how are you to read this book? As you would read a book on baking bread:
If you do not spend much of the time with your hands covered with flour, you are
doing itwrong. In the same way, study this book with pencil, pen, paper, calculator,
and perhaps computer at your fingertips, and use them to try out every new idec
you encounter.
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CHAPTER 1

Structural Models for Data

1.1 Introduction

You probably think that statistics has to do with managing lots of numbers. But
the basic goal of scientific research (which may well be the reason you collected
all those numbers) is to understand them. You will find that statisticians are called
in when a scientist, engineer, or planner decides that some survey or experimen
has produced too many numbers for a mere human being to comprehend. We
statisticians believe that it may still be possible to describe the most important
features of those numbers with comparatively simple mathematiaddls. This
chapter will give an overview of some of the most useful models that belong in
the tool kit of any aspiring statistician.

At least two sorts of models will be required, depending on the experiments
we have performed. First, we will study experiments whose results are measurec
numbers, such as a temperature or pressure. We will try to summarize how those
numbers seem to have been affected by experimental conditions. Second, we wil
consider experiments whose result is a count of how many subjects fell in certain
categories, such as male/female or alive/dead. Again, we will want to see how
those counts change according to conditions under which the count was taken.

Time to Review

Summation notation
Natural logarithms and exponential functions
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1.2 Summarizing Multiple Measurements That Show
Variability

1.2.1 Plotting Data

Very often, a scientist finds herself measuring carefully some natural quantity, like
alength or weight, in hopes that it will help her understand some phenomenon. But
then, showing the care that scientists must show, she takes a second measureme
of the same thing. Sometimes the answer will be identical, up to the accuracy
of her instruments. In many cases, though, it will be substantially different; and

there will be no reason to think a blunder has been made. So she does a series
these comparable measurements, as many as she has time, patience, and resour
for. And she may well find that she has obtained an incomprehensible variety of
numerical answers to a simple question.

Example. In 1882 Albert Michelson made 23 measurements of the velocity of
light in air, in kilometers per second above 299,000:

883 711 578 696 851
816 611 796 573 809
778 599 774 748 723
796 1051 820 748
682 781 772 797

(That is, 711 means he measured a velocity of 299,711 kilometers per second ot
his sixth try. Do you see what 1051 must mean?)

We need some notation for this situation. Call each ofritabservations;;,
wherei = 1,...,n. Then, for example in the velocity data,= 23 andx;7 =
(299,)573. Probably the first thing you would want in this situation is some way
of organizing these numbers. Let us trgemmetrical representation; for example,
draw a horizontal number line whose range encompasses our measurements. The
place a thin vertical line at the value representing each of the observations. This is
called ahairline plot (Figure 1.1).

When two observations are the same, we simply double the thickness of the
line. (In other books you may see a similar display callebtaplot.)

Strictly speaking, the art of drawing such useful pictures belongs to a field called
statistical graphics; and that is not the subject of this textbook on mathematical
methods. But statisticians find some kinds of pictures so enormously useful that
we can hardly imagine doing without them. Besides, there is a mathematical prin-
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FIGURE 1.1. Measured speed of light in km/s above 299,000
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ciple hidden in this diagram: We have represented a numerical measurement by
coordinate of a geometrical position on a line. The number did not start out as a
point on the line, but we have felt free to put it there. We will see later that this
simple step lets all the powerful tools of geometry fall into the statistician’s tool
kit.

1.2.2 Location Models

In our example, the numbers fell haphazardly in some region of the line. The
scientist will tell you that she was trying to measure a constant of nature; but the
measurements were so difficult to do well that they vary unpredictably by various
amounts above and below the correct value. We have represented the moder
accepted value of the speed of light in air, (299,)710.5 km/s, by an the plot.

This is called a (simpléepcation model for how the numbers came about. We
hope to simplify the collection down to a single important quantity (that we often
denote by the Greek letter) that we believe to be the center of our cluster of
points. But to be honest, we carefully record the errors that cropped up in each of
our observations. These are thguantitiesy; — «. For example, for observation 17
above, this erroris 5737105 = —137.5. We have called them errors; but a better
word is modelresiduals. After all, with deeper understanding of the science, we
may realizenhy some of the measurements were different fronThe residuals
are positive if the measurement is larger than the experimenter thinks it should
have been, and negative if it is smaller.

Of course, usually our scientist does not know the valye;she did the exper-
iment in order to find out. Perhaps she consulted a statistician, so we could provide
her with an intelligent guess that she could report to her fellow scientists. So a
statistician needs to be able to determine a number in the middle of the cluster,
called anestimate, often denoted byi, to report as a plausible value af With
luck, thissummary of many measurements will be better than a single measure-
ment. Of course, you could just stare at the hairline plot and make an educatec
guess of the center of the data; with practice, this could be a very good method. Bu
it has one fatal flaw as far as a scientist is concerned: It isapeatable—no two
statisticians would report the same estimate. This immediately undermines muct
of the trust her colleagues may have in her proposal. So we ask an important ques
tion: What are good ways of making repeatable estimates of unknown quantities,
and how good can we expect them to be?

There is one standard method of estimation that is so popular that you should set
itrightaway. Imagine that the hairlines in our plot are equal, physical weights sitting
on a (weightless) bar that is our number line. A natural center of those weights
would be the point at which we would place a fulcrum so that the bar balances.
(Notice the little picture of a fulcrum on the hairline plot of light velocities.) You
may remember from high-school physics that the weights times distances musi
sum to the same value on each side of the fulcrum (so that the torque is zero). Thic
says that the sum of the distanaes- 1 (their residuals) for observations greater
thanu must equal the sum of the distanges x; (the negatives of their residuals)
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for observations less tham, because the weights are the same. If, for example,

we number the observations so that the first 1, ..., k were less thap and the
remainingi = k + 1, ..., n wereu or greater, then the balance condition looks
like

(o —x1) + (0 —x2) 4+ 4 (0 — x5) = (g1 — o) + (g2 — ) + - - 4+ (x, — ).

If we move the pieces on the left of the equal sign to the right side (changing signs
as we do so), then we see that the positive and negative residuals together mu
sum to zero. We write that condition Bummation notation (which you should
review): > ", (x; — u) = 0.

We will find our estimate by solving this equation (called timermal equation)
for . First, we can always split the sum into two pieces around the minus sign:
Yo xi — > i_y ;u = 0. But that second sum just means that you are adding the
constanfu to itselfn times:)__; x; — nu = 0. Moving it to the other side of the
equation and dividing by, we obtainjii = % Y ', x;. This is just the familiar
arithmeticaverage of the observations; the summation notation just says that we
add them all up, and divide by how many there ang: € x, + --- + x,)/n.
Statisticians call this theample mean, written i1 = x. (In the speed of light
example,x = (299,)756.2 km/s, as you should check; this is not exactly at the
true value, but it is closer than most of the individual measurements.) There are,
of course, many other ways to estimate the center of the datme of these is
illustrated in your exercises.

I am willing to guess that when you were checking my sample mean calculation,
you did not do it precisely the way the formula says to. When | was taking the mean
of the speeds of light, | did not calculate (2883+ 299,816+ - - - +299,723)/23.
Rather, | saved time by calculating (88816+- - - +723)/23+299,000. To show
the mathematical principle, let stand for any convenient value on the scale of
measurement. Subtract and then add it to each term in the formula for the sample
mean:k = 137 x = 13" (x; — v + v). Sum those last’s separately:
=137 (i —v)+ 137 v. When we add a constant to itseltimes, that
just multiplies it byn, canceling the: in the denominator. We get a new formula,

X = % Yoi_q(x; —v) 4+ v. lusedv = 299,000 in our new expression. Some such
choice will often be convenient.

1.3 The One-Way Layout Model

1.3.1 Datafrom Several Treatments

Often a scientist faces a set of measurements obtained in more than one
experimental situation.

Example. In 1974 Till reported several samples of the salt content in parts per
thousand of three separate water masses in the Bimini Lagoon:



1.3 The One-Way Layout Model 13

o AT |
n I

u IR |

T T T T
37 38 39 40

FIGURE 1.2. Salt in parts per thousand in sea water

Massl: 37.54, 37.01, 36.71, 37.03, 37.32, 37.01, 37.03, 37.70, 37.36, 36.75,
37.45, 38.85

Massll: 40.17, 40.80, 39.76, 39.70, 40.79, 40.44, 39.79, 39.38

Masslll: 39.04, 39.21, 39.05, 38.24, 38.53, 38.71, 38.89, 38.66, 38.51, 40.08

Figure 1.2 gives hairline plots of these numbers.

If we are lucky, the results in the various situations will be so different that we
are obviously measuring completely distinct constantBut very often, as in the
example, the groups will overlap considerably. Is it just a matter of opinion, or
judgment, that one group (the second) seems usually saltier? We would like to
say that there are three different typical levels of sajt,i;, and uy,, and, for
example, thaj; > w,. In practice, we have to estimate the salinity in the two
masses and check thaj > [,. Since these estimates are imperfect, we become
more confident of our conclusion as the estimated separatjon /1, becomes
larger.

The general setup for this model, calledrse-way layout, is as follows: We
havek levelsof thetreatment numbered = 1, .. ., k. In our example, the various
levels are the different water masses of the lagoon where we found the samples, s
k = 3. Theith level has:; separate observationg, numberedi =1,...,5;.In
our salinity datap; = 12; andx;s = 40.79, the fifth measurement in the second
water mass. We write for the total number of observations Z’;Il n; (n =30
measurements in our data set). Our model then says that the true valueitbr the
level is ;. We call these unknown but important constantsgirameters of the
model. If our estimates afe , then theestimated residuals, representing the failure
of our estimated model to describe the observations completely; arefi;.

We have standard estimates for our parameters: just take the sample mean c
the observations in each level of the treatmégnt= x; = ni Zj"zl Xij.

Example (cont.). Though the measurements at the sites overlap considerably,
there seem to be characteristic salinities at each. The group medhs-ai®7.31,
an = 40.10, andi; = 38.89; these are marked on the plot.

We often think of a statistical model as makipgedictions of some future
observation taken under conditions similar to some of the old ones; in the one-way
layout, the prediction would just be the center for that levgl= ;. Of course,
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in the example we did not know what the true center is, so we replace it with its
standard estimatg;. Then, for example, we predict what the 5th observation in
group Il “should have been” by using its estimated group cefiter= 40.10.

Then the estimated residuals are just the actual minus the predicted value for eac
observationx;; — %;;. (In our casex;s — xys = 40.79 — 40.10 = 0.69.) This
formula will hold true no matter what model we are using for prediction.

1.3.2 Centered Models

Since comparisons between the treatment levels are usually our primary interest
we have a different way to parametrize our model, calledctmeered model.

With two levels, we start with a common centerfor all our observations and
then compute how much the higher group is above cebtet: o — . Similarly,

we compute the (negative) amount by which the second group is below the centel
by b, = 2 — n. Now we can write the predictions for each of the two groups
aspu; = u+ by anduy = u + by. This is the first of many examples bhear
models: We start our prediction with a common value, thdd an adjustment
corresponding to the particular treatment level (see Figure 1.3).

Generally, the centered model for the one-way layout looksijke= u; =
w + b;. You might have noticed a problem with this: It is ambiguous. You could
use any value of: at all and then calculate thigs by subtraction. For example,
if our level means are 30 and 40, we might use a commatf 20, then add’s
of 10 and 20. On the other hand, we couldidbe 35 and thé’s be -5 and 5. To
limit ourselves to one possibility, we need a restriction on the parameters.

We will borrow the restriction from a nice property of sample means, which are
the most common estimates. Lethave the obvious estimate, the overall sample
mean of all the measuremeniis= & = 1 3%, >_iL1 xij (a double summation
tells us to add the values for all possible combinations of the indiardj). Then
we would just estimate thigs by by = i — i =Xx —Xx.

Example (cont.). For the three sections of Bimini Lagoon, we fipd= x =
38.58 for the typical salinity in our sample. Then= x, — x = 37.31— 38.58=

by
I X¢———
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FIGURE 1.3. A centered model for salinity
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—1.27 parts per thousand measures how atypical the sample from section I is
Similarly, by =1.52 andbm =0.31.

Now | want to ask, what is the average value of these predicted adjustments
b? It will, of course, just be the difference of the average of all thand the
average of the. Obviously, the average of all the because they are all the same,
is still x. To average the level means, we calculy?@jf;l Z’]’.':l X;. But this way
of writing the double summation means that we should do the second, inner, sun

n;

first. This inner sumd_"_, X; just tells us to add the same numbertimes, to

getn;X;. Butn;x; = ”i% Z’;'zlx,-j = Z;lexij. Then going to the outer sum,

the average of the level means%iif:1 > iy xij = X, the same as the overall
average. By subtractiofn,—x: The average of this is zero. Our adjustments from
the common mean are on average the same in the positive and negative direction
(Remember the related fact, that the sum of residuals about a sample mean is zero

This is such a plausible property that we will require it of any centered model:

Definition. A location model for the one-way layoudt; = u; = u + b; is
centered if the average of thé’s over all observations is zero.

Then our algebra gives us the following mathematical result:

Proposition. The sample mean estimates for the one-way layout parameters
create a centered model.

You should check that this is actually true for the salinity estimates.

1.3.3 Degrees of Freedom

Now we should stop and do a little bookkeeping. We prefer simple models, when we
can get away with them; so we need an index of how complicated our model is. An
obvious criterion is, the more parameters, the more complicated the model. In the
one-way layout, we measureobservations, then try to predict them as well as we
can with onlyk treatment means. We say that the modelhdesyrees of freedom.
For example, in the saltwater problem we try to represent 30 measurements by jus
3 water-mass averages.

Atfirst glance, it may seem that in the centered model we must estimate a single
w andk differentb;’s, for a total ofk + 1 parameters. But remember that e
average is 0, which means that the grand total ofifkdor all observations is
zero:% Zf.‘zl n;b; = 0. This means that after computing the first 1 parameters
b;, we can compute the last one without doing any more estimating by just solving
this equationd;, = —% Zf;ll n;b;. So we really have only ong andk — 1
algebraically independent b's to estimate. For the salinity data, this comes to 1
overall averageu, plus the fact that 2 (out of 3) adjustmetsre algebraically
independent. In a similar manner, as an exercise you should discover that the
estimated residuals; — x;; actually involve only: — k algebraically independent
guantities (27 independent residuals in the salinity data).
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The way statisticians say this is that the original experiment:hdegr ees of
freedom, and we have broken them down into 1 degree of freedom for the center
u, k — 1 degrees of freedom for the adjustmehtsso that the model has a total
of k degrees of freedom. Then we are left with- k£ degrees of freedom for the
estimated residuals. That is,= 1 + (k — 1) + (n — k). We blame the loss of
thosek degrees of freedom on the fact that we had to estithggrameters using
ourn pieces of data. This check-sum bookkeeping will turn out to be increasingly
important as our models and their analyses become more complicated.

1.4 Two-Way Layouts

1.4.1 Cross-Classified Observations

Very often our scientist will want to allow for the possibility that some further dis-
tinction among the measurements affects the comparisons he is primarily intereste
in.

Example. Educational psychologists are excited about a new way of teaching
arithmetic to third graders. Obviously, we would test whether it is really an im-
provement by trying it out on a collection of children, while at the same time
having a similar sample of children use the old lessons (this second group is callec
acontrol group). At the end, we give both groups a test to see how they do; this is
just the sort of one-way layout we talked about earlier.

But some teachers claim that the new curriculum seems to work better with girls
than with boys. From our own experience, we do not believe this claim, but if we
are to convince our fellow teachers, we must allow for this possibility somehow.
We clearly want to give each of the curricula to both boys and girls. The results
may be displayed in a table of test scores:

Arithmetic Test Scores

Boys Girls
New | 15 18 26| 13 17 21
28 30 25 29
Old | 11 14 16| 9 10 18
22 23 19 24

This is an example of awo-way layout. It will require an impressive triple-
index notation, but which fortunately will be easy to decode. Generally, we have
a collection of observations denoted by, wherei = 1, ..., keeps track of
the levels of the first (rowjactor, andj = 1,...,m keeps track of the levels
of the second (column) factor. Then the pair of indi¢ggletermine a particular
cell, a box in a table like the one in the example, in which all subjects receive the
same levels of the treatments. That third index just keeps track of the observation:
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in the ijth cell, so thatt = 1, ..., n;;, where we hadh;; observations in that
cell. Then the total number of subjects receiving tttelevel of the first factor
must ben;, = Z;":l n;; (summing over columns); and the number receiving the

jth level from the second factor is,; = 25:1 n;; (summing over rows). The

dot keeps track of the missing index, so we can tell whether the letter is a row
or column index. Then the total number of subjects for the experiment must be
Yi1nie = Y"1 nej = ne = n. In the example aboveps = 16,11 = 5,

ne> = 10, andn = 20.

As usual, we want to summarize these results so we can tell people simple
and useful things about the treatments we have carried out. The easiest model t
construct just ignores the table organization and lets every pair of factor levels,
every cell, be a single level of treatment. Then the location model prediction just
sayst;x = uij; presumably, the estimate of the typical value for, say, girls learning
arithmetic the old way will be based only on the result for the five girls in that part
of the experiment. This is called tifiell model, because we are making the finest
distinctions possible among our subjects. The model has, of cdwse degrees
of freedom, one for each cell.

The standard estimate will be simply the sample mean of the observations in
that Ce“:,&[j = )E,'j = % lexijk.

Example (cont.). In the arithmetic-teaching example, we estimate= 23.4,
X12 = 21.0,x12 = 17.2,x,, = 16.0. That is complicated enough that a picture
should help (see Figure 1.4).

Hairlines are individual test scores, and they show that, as usually happens ir
experiments with people as subjects, the peculiarities of children and tests seem t
matter much more than the groups we are distinguishing. We can still see possible
patterns: The solid lines show that for each gender, the new teaching methoc

Boys-Old | | | | |
Girs-old | | Lo |
Boys-New | ) | | |

Girls-New | | 4{ | |

10 15 20 25

FIGURE 1.4. Arithmetic test scores: full model
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averaged higher scores than the old. The dotted lines show that in each curriculun
group, the boys’ scores were on average slightly higher than the girls’.

1.4.2 Additive Models

What about the complaint that led to this analysis, that the curriculum is more
of an improvement for girls than for boys? Actually, in our little experiment, the
boys’ average improvement (6.2) was slightly more than the girls’ improvement
(5.0); so our results provide no evidence for the claim. The similarity of these two
improvements supports the idea that the two improvements were in fact the same
We can write a simple model for this situation: We imagine that there is an overall
test-performance center, then add or subtract some amount for each curriculum
next we add or subtract some other amount for each gender. The sample mea
estimates are easy to get: For the center, the overall mean is just 19.4. Since th
mean for the new curriculum is 22.2, then its improvement i 2219.4 = 2.8

on average. The boys’ mean is 20.3; so their edge i8 2019.4 = 0.9. The
disadvantages of the old curriculum and of being a girl are expressed by adding the
negatives of these differences. Such numbers answer the most obvious questior
about test performance.

What does this model say, for example, about girls who take the new curriculum?
We predict a score of 19+ 2.8 — 0.9 = 21.3. This is clearly not the same as the
prediction of the full model using cell estimates, 21.0 (though in this particular
experiment they chanced to be very close).

Our new model is called thadditive model for the two-way layout, and the
notation is as followst;;x = w+b; +c;, whereb; is the adjustment for thith level
of the row factor, and; is the adjustment for th¢th level of the column factor.
These were estimated by adding or subtracting from the overall mean; so once
again we want a centered model. We impose the restriction that on averabjs, the
must be zerof Y°i_; ", 377, b; = 0. As threatening as a triple summation
looks, it just tells us to add up over all possible combinations of the three indices.
Notice that the innermost (third) summation just adds the same thing each time, sc
this is the same as Writing 25:1 Z’]?’:lnijbi = 0. Thenb; does not change over

the next inner sum, so we can factor it out of that Sl;}@:ﬁ:l b; Z’].”:l n;; = 0.
We already have a notation for that inner sum, the total number of observations
in theith row; so we finally get a simple way of expressing our restriction on the
b's: % Zleni.bi = 0. In the same way, we will require that the average value of
the column adjustments be zero; we will let you show as an easy exercise that thic
restriction reduces tg >, n,jc; = 0.

We still have our bookkeeping to do. There is, of course, 1 degree of freedom for
the u parameter. Since there drdifferentd’s, and we have placed one restriction
on their average (so we can always compute the last one), wd hatedegrees
of freedom for the row factor. Similarly, there are— 1 degrees of freedom for
the column factor. Adding these together, we havell-1+m —1=14+m—1
degrees of freedom for the additive model for the two-way layout. The residuals
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in our predictions of how each child will doy;x — %;;x, of which there arer,
must then have — I — m + 1 degrees of freedom, because we had to estimate
our! +m — 1 parameters from the observations. That is, we have a checksum
n=14+(0-1)4+m—-1)+m—-1—m+1).

Standard estimates of the parameters are obtained just as in our example
The overall center may be estimated using the mean of everylpody, x =
Iy Y Y xijk. Then we estimate the column adjustmentby find-
ing the column sample mean, = ni Z;”Zl ZZil x;jx and then subtracting the
overall meaniSi = X;, — x. In the same way, we estimate the column adjust-
ments by¢; = x,; — x. The estimated prediction of the model then looks like

Rk =+ b+ ¢ =%+ (Xie — X) + (Faj — X) = Kjo + %uj — .

1.4.3 Balanced Designs

Our standard estimate of the additive model seems quite reasonable; but that i
a little bit of an accident, because in our example we had the same number of
observations in each cell. The additive model would still be interesting in other
cases. But if the numbers of observations in the cells of different rows vary, our
estimates of the column adjustmeftsusing the sample average of each column
are no longer entirely convincing. For example, if the counts of observations are

36

52
(5 observations versus 3); but in the second column the average is based mostl
on the first row (6 observations versus 2). Intuitively, this is not fair; so we will
single out a class of designs that do not have this problem:

, the sample average of the first column is based mostly on the second row

Definition. A two-way layout has dalanced design whenever the numbers of
observations in the cells of each row are proportional; thatis/#;.) = (n.;/n)
foreachi =1,...,mandeachy =1, ...,1

Any design (like our example) in which all thg;’s are the same, is of course,
balanced. Another example of a balanced design is one where the counts of ob
servations are; 121 , since% = % = g You should prove as an exercise that we
could equally as well have said that the cells of eemlhbmn are proportional.

The only significance of balanced designs is that the standard estimates of pa
rameters make sense. Lazy statisticians have made themselves very unpopul:
with scientists by telling them that their experiments were bad if they were not
balanced. This is false; we can, with slightly more sophisticated estimates, extract
just as much information from an unbalanced experiment. We will see how in
Chapter 2.

We will let you show off your skill with summation signs by proving the
following as an exercise:

Proposition. The standard estimates for the additive model are centered.
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Boys-Old | |
Girls-old | |

Boys-New |

Girls-New |
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FIGURE 1.5. Arithmetic test scores: additive model
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Girls-Old

Boys-New X
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FIGURE 1.6. Parallelogram of additive model

We draw a picture of the additive model for the math test in Figure 1.5. Because
in this instance the additive model is similar to the full model, you may have to
stare at Figures 1.4 and 1.5 a moment to see the difference. In the additive model
opposite edges of the quadrilateral go over and down by the same amount (whel
you add your row or column corrections); therefore, opposite edges are parallel anc
ofthe same length. The figure is nowarallelogram, and not just any quadrilateral
(see Figure 1.6).

Generally, the graph for any two-by-two experiment with an additive model will
be a parallelogram. If there are more than two levels of a factor, the picture is more
complicated; but the solid lines connecting equivalent levels of the first factor are
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still parallel. In the same way, dotted lines connecting the equivalent levels of the
second factor are parallel.

1.4.4 Interaction

Just how different are the full and the additive models for the two-way layout?
Our geometrical analysis suggests that additive models are more restricted in wha
they can predict—they must form parallelograms, while full models may (or may
not) form parallelograms. This suggests that the full models have the freedom to
follow the sample observations better, leading to generally smaller residuals. Let
us quantify the difference by subtracting the degrees of freedom for the additive
model from those for the full model:x m — (I + m — 1). Factor that expression

to conclude that the latter requires us to estimate {)(m — 1) more parameters
than the former ((2- 1) x (2 — 1) = 1 more parameter in the case of our 2 rows
by 2 columns experiment).

Now let us quantify the difference in the predictions made by the full model and
the additive model: Of course, the standard estimated prediction for the full model
was justy;;x = X;;. The difference between the two is thén — x;, — x,; + .

In our example, for boys in the old curriculum, it4€0.3. You should notice that

for every cell in our example, it is either plus or minus that same quantity. This is
what we meant when we said that the full model had exactly one more degree of
freedom; only that one amount is available to improve the predictions. In general,
these quantities measure a very important feature of the full modéhteraction.

It is the amount by which yonannot say that the result of a two-way experiment

is just a common value plus a column adjustment plus a row adjustment. In our
example, it is the amount by which the girls in the class were helped more than
the boys by the new curriculum.

There is no reason for interactions to be small; In Figure 1.7 are plots of the cell
averages (full models) for three different two-by-two experiments

cell11 X X
/ \
/ \
/ \

/I \

/ AN
cell12 % %
cell21 XX

~N
1 N
/ N
/ N
/ N
II \\~
cell22 X X

FIGURE 1.7. Three degrees of interaction



22 1. Structural Models for Data

The horizontal axis (whatever you measured in each experiment) and the raw
data have been left out so that you can see the qualitative features of the models
In the leftmost example, the figure is just about a parallelogram; this means that
an additive model seems to explain the cell centers satisfactorily.

In the middle example, there are consistent and perhaps noteworthy row anc
column adjustments; row 1 is higher than row 2, and column 2 is higher than
column 1. But these adjustments are enough different in the different cells that we
have nothing like a parallelogram. In this case, interaction will be substantial.

In the rightmost example, we see no common row or column adjustments; the
factors seem to lack any consistent effects. This time, there is a great deal of
interaction, and little else going on. We might see such a picture, for example,
when experimenting with one of those drugs that is a tranquilizer when given
to children and a stimulant when given to adults; therefore, its effect on level of
activity is opposite for the two groups.

145 Centering Full Models

We can now provide a centered parametrization of the full model. We just append
an interaction term to the additive mode); = u = b; + ¢; + d;;. Thed’s are

just those corrections whose standard estimates aiy}eﬁe Xij — Xio — Xoj + X,
calculated above. The restrictions that make this a centered model are as before
% Zi:l nieb; =0 and% Z’;:l NejCj = 0.

What restrictions do the interaction terms require? Of course, as corrections we
want them to be zero on average; but even more, we want the set of correction:
to each level of the row factor to average zero. This is because if the average
interaction in that row is not zero, we should have added that average adjustmen
to the corresponding row adjustmentin the first place. Then the additive part of
the modelwould be that much more accurate in its predictions. So our restriction for

m

row i looks like - > j—1nijdij = 0. There aré of these restrictions. In the same

way, the interactions for each colunjrshould average zer% S nidj =0,
for a total ofm restrictions. '

There seem to be of these restrictions, but not all of them are new. Notice that
the first set of restrictions already tells us that all the interactions taken together
average zero (exercise). Therefore, when we get to the last of the second set c
restrictions, we already know it must be so, because the grand average has t
be zero. Therefore, we really only have — 1 algebraically independent new
restrictions, and the number of restrictions to impose centeririgtisn — 1.
Therefore, the number of degrees of freedom for interactibrig — (I +m—1) =
({ — D)(n — 1). This is the same as the extra degrees of freedom in the full model
over the additive model, and it is no coincidence: We built it that way. We now
have that the total degrees of freedom for the centered form of the full model is
1+1+m+({—21)(m—1) =1 x m,which s, of course, exactly the degrees of
freedom in the uncentered form of the full model. After all, these are just two ways
of writing the same thing. You should now prove the following as an exercise:
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Proposition. The standard estimates of ., the b's, and the c’s plus the standard
estimates of theinteractions d;; = x;; — Xis — X, + X forma centered full model.

Of course, our standard estimates of the full centered model are satisfactory
only if the experiment is balanced. The cell averages still give the right predictions
for any full two-way layout, though, because they come from the one-way layout,
where there was never a problem with balance.

The style of statistical analysis we have been studying in this chapter was first
explored in depth in the 1920s by R. A. Fisher; and it has revolutionized scientific
research throughout biology, medicine, and the social sciences. You may explore its
many variations in advanced courses called something like “experimental design.”
For example, a number of new possibilities arise when there are three factors.

Of course, we have not yet addressed a fundamental issue: How do we tell how
well a model matches (statisticians d#g) the data? It is perfectly possible to
estimate the parameters of a truly stupid model, such as an additive model in case
where a great deal of interaction seems to be present. In other cases, it may see
to the eye that an additive model is adequate in a particular application, or even
that we can ignore one of the factors. But is there some more objective way to
decide whether we are doing the right thing? We will tackle such matters later in
this book.

1.5 Regression

1.5.1 Interpolating Between Levels

Sometimes, if the levels of our treatment have a numerical meaning, we can extrac
still more information from the observations in even a one-way layout.

Example. Twelve subjects whose blood pressure is disturbingly high are given

an eight-week regimen of a new pressure-lowering drug. At the end of that time,
the change in their diastolic pressures is measured (a negative humber is good).
The patients were arbitrarily divided into two groups: One got 100 milligrams a

day, the other, 200 milligrams. The results were

100 mg :—40, —30, —25,-10, 0, 15;
200 mg :—50, —35,—-30, —20, —15, 10.

You might draw parallel hairline plots to see what is going on here. The sample
means of the two dosage groups-atkb and—-23.33, with an overallmean19.17.
Then the standard estimates of the centered model are-19.17,b190 = 4.17,
andézoo = —4.17. On average, the group who received the larger dose did better.

There is nothing new here, but what if the investigators notice something else:
The higher-dose group are just beginning to show signs of an unpleasant (bu
not deadly) side effect? The lower-dose group has no problems. From experience
with similar drugs, it is suggested that a relatively modest drop in the dosage
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may alleviate the side effects. So a new series of experiments is proposed, witf
doses like 175 mg per day included. Since these new experiments take time an
money, it would be nice to make intelligent guesses in advance of their effect on
blood pressure, using what we have already learned. Unfortunately, we did not give
anybody 175 mg per day. You will probably have thought of a reasonable thing to
do:interpolate. The halfway point between the doses, 150 mg, should correspondin
this case to the overall mean19.17 mm. Adose of 175 mg is (175150)/(200-
150) of the way from the middle to the upper dose, which corresponded to an
increase blood pressure .17 mm. So our predicted response to a dose of 175
mgis—19.17— 4.17(175— 150)/(200— 150) = —21.25 mm. That was certainly
easier than doing the whole experiment again.

Notice that this interpolation procedure works &y new dose:

d —150
200— 150
(wherep is change in blood pressure a#ds drug dose). You should check that
this is just a novel way of writing the usual one-way model—it makes the same
predictions at 100 and at 200 mg. It is called timear regression model for this
experiment.

Let us draw a picture of our situation (Figure 1.8).

We have turned the picture on its side; this is the conventional way to draw a
regression model. The’s represent the sample means of the changes for our two
dosage groups. Notice that a linear regression model was the equation of a straigt

p=-19.17— 417 ~19.17— 0.0833¢ — 150)

abuey) ainssaid

0 100 200 300

Dose

FIGURE 1.8. Pressure change as a function of dose
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line, which we have drawn on the graph. This sloped line represents our various
possible interpolations. The dotted line shows how to make such a prediction: start
at 175 mg, go up until you hit the solid line, then go across to read off the prediction
on the vertical scale.

How seriously should we take such predictions at interpolation points like 175?
There are two limitations to this method:

(1) The predictions are unlikely to be much better than the means at the original
doses. Remember that the 6 people in the 100 mg dose group varied-#0m
to 15, and the 6 people in the 200 mg dose group varied fr&@® to 10; so the
predictions at 100 and 200 mg are not likely to be wonderfully accurate anyway. In
between, at, say, 150 mm, there may be a slight improvement because 12 peopl
rather than 6 contributed to the calculation. But notice that outside the actual
experimental range, at, say, 0 or 300 mg, the prediction would likely be quite a
bit worse: Errors in one sample mean or the other will swing the line wildly by a
sort of lever effect (see the graph in Figure 1.9). That is why we should rarely trust
suchextrapolated rather than merely interpolated estimates.

(2) Are we at all sure that the actual pattern of response to the various doses i
a straight line? Laws of nature can take a great many mathematical forms. Since
pharmacology provides no helpful general theory about what sort of equation to
use, we guessed the simplest continuous function we knew of, a straight line. If the
line in our picture should really be curved, our predictions will be systematically
wrong (biasedis the statistician’s word). Furthermore, they are likely to be, again,
even worse for extrapolated than for interpolated doses.

Example. If the true connection between dose and blood pressure follows the

dotted line in Figure 1.9, so that our estimates were only slightly off at the exper-

imental doses, notice how far off our extrapolations are near 0 and 300 mg. On
the other hand, if the true connection is the dashed, curved line, our experimenta
estimates were just about right; but our extrapolated straight line still goes quickly
wildly wrong for extreme doses. In the exercises you will see an example of how

to make predictions with curved models (if you know you need one).

1.5.2 SmpleLinear Regression

If we remember to be cautious, regression can be a widely useful tool. Generally,
asimple linear regression model works as follows: We measure the numerical
responses of our subjects, fori = 1, ..., n. The responses to the experiment are
values of thadependent variable (the blood pressure changes in our example). For
each subjectwe have a numerical value describing the conditions of the experiment
x;, which are values of thimdependent variable (in our example, drug dosages of
100 or 200 mg). Then we make predictiofis= u + b(x; — x) wherex is the
average independent variable value at all the observations (here, 150 mg). (Thit
is a centered model, as you will check in an exercise.) You should remember
from analytic geometry thdt is the slope of the line we have drawn. The model
possesses two degrees of freedom, one eagh éord forb.
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FIGURE 1.9. Erroneous and nonlinear regression

Example. Our example had only two values of the dependent variable, the drug
dosage; but a simple linear regression model allows for any number. Figure 1.10
shows the weights of purebred beagles at four different ages, 6, 8, 10, and 12, witt
four puppies of each age.

The diamonds mark the cell-mean estimates of a one-way layout; the crosses
the weights of individual dogs. To interpolate for other ages, the obvious device
is to connect the crosses with straight segments, as in our dotted path. This is al
example of anonparametric regression estimator, which you may see again in
advanced courses.

In our example, it is interesting how the crosses fall near a single straight line
(though not exactly); a possible line is the solid segment. Such a simple linear
regression prediction has the advantage of being much simpler than the broker
line. (2 degrees of freedom instead of the 4 for the one-way-layout estimates). The
predictions are obviously nearly the same. Of course, we do not expect the curve
to continue to follow closely a straight line, or we would have 50-pound beagles
at the end of a year. On the other hand, our prediction for a puppy age 7 weeks
(about 6.5 pounds) is quite plausible.

You have no doubt noticed a problem. Since | did not find the line by interpolation
of level means, how do | draw that straight line, that is, estimadé@db? We are
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FIGURE 1.10. Weight as a function of four ages

stuck: There is no longer an obvious choice for the standard estimator. A powerful
general method for obtaining such estimates will be introduced in the next chapter.

Simple linear regression models may be useful for summarizing the results of
many other experiments. For example, instead of selecting puppies of a few specific
ages, we might have simply taken a variety of puppies, recorded each of their ages
then weighed them. There might then be as many independent variable value:
(ages) as there are dogs. The results are captured in the Figure 1.11.

We usex’s to mark the points whose coordinates are the age and weight of a
particular dog. This kind of diagram, one of the most useful in all of statistical
graphics, is called scatter plot. We use it to compare any two distinct measure-
ments we take on each of a number of different subjects. In this example, though
the x’s for the puppies are widely scattered, we see a pattern that might be statec
as follows: The average weights of the puppies of approximately the same age
follow a linear upward trend. The solid line is a proposed simple linear regression
model,w; = u + b(a; — a) (w is a weight and: is an age). Once again, we shall
have to wait until Chapter 2 to find good estimateg.aindb.

1.6 Multiple Regression*

1.6.1 Double Interpolation

In factorial experiments, we split up our subjects among several levels of two
or more treatments. We successfully interpolated numerical levels in the one-
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FIGURE 1.11. Weight as a function of many ages

way layout; perhaps something similar might work when each of the factors has
numerical levels.

Example. We study the effect of cooking time and temperature on a standard
cake recipe. Three cakes are baked at each of 350 and 375 degrees, and for 20 a
25 minutes. At the end we measure the percentage of the original moisture tha
remained in the cake:
Time
20 25

Temperature 350 | 403641 | 28 27 32
375 | 323730 192425

When we compute the standard estimates of an additive model, we get
30.917 and that the adjustment for going to the higher temperature3i683
and the increment for going to the longer time-i5.083. (You should check my
calculations as an exercise.) A graph looks like that shown in Figure 1.12.

The two baking times correspond to the lines that go from lower left to upper
right, and the two temperatures to the lines at right angles to them. You can see
from the observations that the additive model works fairly well.

Now we can carry out doubleinterpolation to predict, for example, how much
moisture will remain in a cake leftin a 360 degree oven for 23 minutes. The center
of the experiment is at 22.5 minutes and 362.5 degrees. We would, of course,
predict that the percentage of moisture in cakes cooked in that way would be the
overall average of all our cakes, 30.917%. Now adjust for the distance from that
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FIGURE 1.12. Cake moisture as a function of time and temperature

center by computing

23— 225 360 3625
7 =30917-5.083 .~ 3083 __ = 30517.
i =30917-5.083 - >~ —~3.083 - - =305

You can read this in a rough way off the plot: Interpolate between 20 and 25 to
get one dotted line, and between 350 and 375 to get the other; then find their
intersection. That position on the vertical scale gives an estimate of their moisture
level. (We felt free to use the standard estimates of the parameters in this mode
because it was based on a balanced two-way layout.)

1.6.2 Multiple Linear Regression

Generally, a linear regression model for a dependent varigblesing two
independent variables andx; looks like

57] = U + (-xlj —)Zl)b]_ + (-x2j _)EZ)bZ

in centered form, wherg keeps track of the settings for a single observation. The
model has 3 degrees of freedom, one eachufar;, andb,. We noticed from our
example that it corresponds to a two-by-two additive factorial model when there are
two levels of each independent variable. Therefore, the standard estimates coul
be obtained in the obvious way from row and column means.

If there are more than two levels of either variable, the regression model is no
longer equivalent to a factorial design, as you may see by counting degrees of
freedom. The regression model is a simplification of the factorial model, and we
do not yet know a standard estimator for it, whether the design is balanced or not.
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Nevertheless, we can plot the model just as we did above, with a parallel coordinate
grid for each variable. We will let you graph one as an exercise. Furthermore, there
are obviouslymultiple linear regression models for any number of independent
variables, which look just like the two-variable model.

1.7 Independence Models for Contingency Tables

1.7.1 Counted Data

It may have occurred to you that there are other sorts of statistical experiments
than those that provide us with repeated, varied measurements. What about th
results of surveys?

Example. A political polls asks a (we hope) representative assortment of potential
voters for whom they expect to vote for President. Of the 100 people they ask, 43
say Smith, 35 say Chan, and 22 insist that they are undecided.

Results of experiments of this kind may be summarized as counts of the numbers
of subjects who fall into various categories. The most common model for these
counts is theroportions model, which is what we are doing when we summarize
our survey as 43% Smith, and so forth.

Formally, we have a set of counts of the numbers of subjects falling in distinct
categories;; fori = 1, ...k, wherer‘:1 x; = x, = n. In the example above,

k = 3,n = 100, and, for example;, = 35. We imagine that these subjects are
representative of a much larger class of potential subjects, caltepidation.
Themultinomial proportionsmodel asserts that a true proportipnof potential
subjects from that population falls into thth category, so thazf.‘zl pi=pe=1

(as we expect proportions to behave). The predicted counts in the category for oul
experiment are then, of course,= np;.

Example. Genetic theory predicts that in a third-generation crossbreeding exper-
iment there should be population proportion of 25% individuals of type AA, 50%
of type AB, and 25% of type BB. In the notation for the multinomial proportions
model, pap = 0.25, pag = 0.50, andpgg = 0.25. If we do the experiment with

40 individuals arising in the third generation, then our predicted counts (we some-
times sayexpected counts) areian = 0.25 x 40 = 10, xag = 20, andxgg = 10.

But of course, when the experiment is carried out, the recombinations are not pre-
cisely predictable, and we get actual countslikg = 11,xag = 22, andvgg = 7
(called theobserved counts). Later in the book we will learn something about just
how large a difference between observed and expected counts might reasonabl
be accepted as ordinary variation.

Of course, in the political polling example we do not know the true proportions
to expect. You will surely have guessed the standard estimates of the populatior
proportions:p; = x;/n, thesample proportions. In our example, we estimate that
candidate Chan has 0.35 of the vote, since- 100. If we do use the sample
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proportion estimate for this model, notice that the actual and estimated counts
always coincidex; = np; = x;. This time, we have nothing like residuals with
which to evaluate the quality of the model.

As with measurement experiments, counting experiments become much more
interesting when the subjects are classified by the levels of two or more factors:

Example. A Hollywood studio is test-marketing a new film; and viewers are
simply asked whether or not they liked the movie enough to recommend it to
friends. An executive voices concerns thatits market may be limited if substantially
smaller proportions of either men or women like it; so responders are classified by
gender:

Observed Counts
Male Female

Like 51 83 134
Didike | 42 24 66
93 107 200

The survey counts appear in the middle of the table. The other numbers are row
and column totals, and the grand total of 200 subjects. This is catledtimgency
table.

Generally, we will denote a two-way classification by an array of cauynt$or
i=1.... kandj=1,... [thenwrite}} ;x; =x.;, Y ;4 x; = x,and

ko1 k
E E Xij = Xie :E Xej = Xeo = 1.

1
i=1 j=1 i=1 i=1

~

In our movie exampley1, = x;r = 83,x2, = xp = 66, andn = 200.

The multinomial, osaturated, model consists of population proportions for the
individual cells p;;, with column proportionst.‘:l Dij = Dej, TOW proportions
le:l pij = Pie, and, of course,

k 1 1 k
ZZP” Zpi‘:ZPO_/:Pu:l.

i=1 j=1 j=1 i=1

It corresponds to the full model for a two-way layout.

The standard estimates of these parameters are again the sample proportior
pij = x;;/n, and, of coursep;, = x;/n and p,; = x,;/n. In our example, the
proportion of moviegoers we wanted to survey who are female fans of the movie
we estimate to bg; r = 83/200= 0.415. The proportion of females in the survey
population is aboupr = 107/200= 0.535.
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1.7.2 Independence Models

In our example, 51/93= 0.548 of the men liked the movie, whereas/887 =

0.776 of the women did. This suggests that it is more of a women'’s movie; but of
course, we have no idea whether this is an accident of our sample and perhaps n
a characteristic of people in general. To get a better idea, let us see how consister
our survey is with another model, in which gender makes no difference at all.

If that were the case, then the important parameters would be a population
proportion of malep,, and a proportiorp; of people who would like the movie.

If gender and taste are unrelated, then ofithg males you would expect to find

in the survey, a proportiop; would like it, for a predicted count of favorable
male viewersip, py. We may estimate this byp, py = 200333 23 = 62.3 men

in the survey who might be expected to like the movie, if gender is irrelevant to
taste. Then we may ask ourselves whether this is different to an important degree
from the 51 men who actually liked it in our survey, and whether such a difference
might have been an accident of who we happened to pick for our sample. (Of
course, we do not know enough yet to come up with a sensible answer.) This sor
of model, in which row and column classification are assumed irrelevant to each
other (and so we calculate proportions of proportions by multiplication), is called
anindependence model. The concept is one of the most useful in all of statistics.
The row and column proportions become the key parameters of the model, and we
predict counts byt;; = np;ep.;.

In Figure 1.13, we have represented the moviegoing population by a square of
area one. The vertical subdivisions represent the proportions of males and female
in that population; the horizontal subdivisions represent the proportions of the
population who like and dislike the movie. Therefore, our model predicts that the
shaded area; pys, Will be the proportion of moviegoers who are male enthusiasts
for our movie.

Pu Pr

bk

P

FIGURE 1.13. The independence model
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You might notice (exercise) that if the independence model is exactly true, we
get a table of counts that, if it represented the numbers of observations in each cel
in a two-way layout, would be balanced. Therefore, when we design a two-factor
experiment to be balanced, we are arranging that the factors be independent of on
another.

To evaluate the model, we estimate the row and column proportions, then use
them to create a table of the counts we would hexpected to see. For example,

Expected Counts
Male Female
Like 62.3 71.7 134
Didike | 30.7 35.3 66
93 107 200

We called the original table, with the raw data, tit®served counts; comparing

the two tables should tell us how good the independence model is. Notice, by the
way, that the difference between observed and expected counts, a sort of residua
is plus or minus 11.3 in each of our four cells. Notice also that the row and column
totals are exactly the same in the two tables. As an exercise, you should check the
this is always true for independence models.

1.7.3 Loglinear Models

You probably noticed that our two-way contingency tables and two-way layouts
may both be displayed in rectangular tables. The similarity goes deeper. The ad-
ditive model for the layout involveddding adjustments for the row and column
factors, whereas the independence model for a contingency table required us t
multiply row and column proportions. But we can make the parallel clearer by
turning multiplication into addition. You know how to do that: talagarithms,

and use the standard fact that idg= loga + log b. Starting with the multinomial
proportions modet; = np;, we get logt; = logn + log p;. (Time to start getting
used to a convention: In statistics, logarithm always meatsal logarithm [base

e] unless you clearly state otherwise.) Read this as a linear predictive model for
the logarithms of cell counts.

So far nothing interesting has happened; but we found earlier that it helped to
create ecentered version of the model, with a middle value plus a correction for
the particular category. This would look like I&dg= 1 + b;, much like a one-way
layout. Then we required that the level effects, averaged over the observations, be
zero. In this model the individual numerical observations are cell counts; so we
will require that the averages of thé& overcellsbe zero:% Zle b; = 0. Now let
us connect the two ways we have written our models. Sum both versions over all
categories to get

k k k
logx; = klogn + E Iogpjzk/hLE b; = ku.
— — —

J J= J=
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The sum of theb’s disappeared because of the centering condition. Therefore,
w = logn + % Z’;:l log p;. Now substitute this back into the centered version

and solve forb; = logx; — u = logn + logp; — logn — %Z’J‘.zllog pj =
k

log p; — % Zj:l log p;.

Example. In the genetics example above with= 40 individuals andk = 3

genotypes, we obtaip = 2.534,baa = bgg = —0.231, anthag = 0.462 (so the
adjustments do sum to zero).

Sample estimates of thes andb’s can be gotten by using sample proportions
in the same way. We count degrees of freedom by starting mithitegories and
letting « have 1 and thé’s have onlyk — 1, because we force them to average 0.

But what do the parameters in these new models mean? The paramister
just an average log count, but we can say more aboub'thén the case where
there are only two categories, as in Like/Dislike (or Yes/No, or Male/Female) the
formula reduces té, = 1/2(logp./pp) = 1/2(logpL/(1 — pr)), by familiar
facts about logarithms and the fact that+ pp = 1. The quantityp, /(1 — pL) is
called theodds ratio for someone liking the movie; and log, /(1 — p.) is called
thelog-odds, or the logit. This is an alternative way of measuring the proportion
of a population. For example, 10% of Americans are left-handed; we might as
easily say that the odds ratio for being left-handed1309 = %. In horse-racing
parlance, this is 9:1 against a typical person being left-handed. The statistician
turns it into the logit for left-handedness I@(: —2.197. Since a proportion of
% is an odds-ratio of 1 and so a logit of log(%) 0, we conclude that a positive
logit refers to better than even odds, and a negative one to worse than even.

Definition. Corresponding to a population proportiprwhere (O< p < 1), we
have itsodds o = % and itslogit / = logo = log ﬁ.

In a case like this in which we have divided the population into two categories
such as Like/Dislike, notice that the odds ratio for disliking the maoxig/(1 —
pp) = (1— p1)/pL is one over the odds for liking it. But log{) = — log(a). So
the logit for disliking the movie is the negative of the logit for liking it, and similarly,
for Male versus Female and any other division of a population into two parts. This
is just another way of remembering our centering conditipa- b, = 0.

For more than two categories, this are calledmultiple logits; you may see
them again in advanced courses.

1.7.4 Loglinear Independence Models

Our problem becomes more interesting when we construct linear versions of our
independence models for two-way contingency tables. In the movie example

log X,y = lognprpy =logn +log pr, +10g pu.

The centered version is lagy = w + by + cp. We will require the row and
column effects each to average 0 over cells; so that in thisigasebp, = 0 and
Cy +crp = 0.
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We again need to connect the two models with the different parameters, for each
of the four cells:

logn +logpr +10g pyr = . + b + cu,
logn +log pr +10g pr = + by + cF,
logn +log pp +10g py =+ bp + cum,
logn +logpp +log pr =+ bp + cr.

Add together the four cell predictions under each of the two forms of the model to
get

4logn 4+ 2logpr + 2logpp + 2logpy + 21l0g pr
=4u + 2by 4+ 2bp + 2cp + 2cF = A,

since by the centering conditions, this andc’s cancel out. This gives us

1
w =logn + E(log pr +log pp + log py + log pr).
Now sum just the first row of predictions:

2logn + 2logp, +10g py + 109 pr = 210 + 2b;..

Substitute what we got for in the previous expression and solve to get=
%(Iog pL —log pp). By a similar argument (exercise), = %(Iog pu — 100 pr);
and of coursehp = —b, andcr = —cy.

Example (cont.). We will use the sample proportions to estimate the parameters
in our movie example:

1
i = 5.298+ (~0.400— 1.109— 0.766 — 0.625); = 4.473,

R 1 1

b= [~.400— (~1.109)]; = 0.355, &y = [-0.766— (~0.625)]; = ~0.071

Wonderfully enough (though perhaps not surprisingly, given our motivation
for it), the row and column adjustments in this independence model are half the
separate logits for the row treatments and the column treatmentg. péa@meter,
though, has a slightly different meaning.

Generally, théoglinear independence model for a two-way contingency looks
likelog &;; = p+bi+c; with centering constrainfs’;_, b; = 0,andy_,_, ¢; = 0.

As an exercise, you should derive general formulas fopthigs, andc’s in terms

of the row and colummp’s. We can do a degrees-of-freedom calculation identical
to the one for the additive two-way model: The saturated modekindegrees of
freedom, and the independence model has! — 1. Therefore, the residuals in

the cell counts havel — (k +1 — 1) = (k — 1)( — 1) degrees of freedom. The
simple differences between raw counts and expected counts in our 2-by-2 table
had only one value, 11.3, because the saturated model had only one extra degre
of freedom.
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1.7.5 Loglinear Saturated Models*

Inspired by our success, we propose a loglinear form of the saturated model:
logxij = u + bi + ¢; + d;j, with the additional constrainty_;_, d;; = O for
each;j and le:l d;; = 0 for eachi. Thed'’s are calledmeasures of association,

or sometimes just interactions, as in the measurement models. We count the fre
parameters just as we did for the corresponding argument for the full measuremen
model, and the totdd is the same as for the saturated contingency table. Therefore,
we expect to be able to solve for the parameters usiagd the cell proportions

Dij-

For example, in our movie experiment, the two versions look liketlog =
lognp,y = logn +10g pry = u+ by + ¢y + dpy. Now add these up over all
four cells to get 4 = 4logn + log pyr + log prr + 109 pyp + log prp (the
centering conditions have canceled all #® c¢'s, andd’s).

Then sum the first row and substitute foto getb, = 3(log py + 109 prr —
log ppy —l0g ppr). Similarly, for the first columng,, = %(Iog pim —logprr+
log ppm — 109 ppr).

Something should strike you here: Unlike our measurement models for balanced
two-way layouts, these estimates are not the same as the ones for the independen
model. In fact, you might notice (exercise) that they are equal only if the indepen-
dence model is exactly true. The interpretatiorb@ndc, as adjustments in the
predicted log-count as we change row or column, is still the same; but the amount
of that adjustment depends on the model.

Now back-substitute to get

1
diy = Z(|Og pem —10gprr — 109 ppy + 109 ppor)

_ } log <PLMPDF> .
4 PLFPDM

The quantityp; v por/(pLr ppm) is called theelativeoddsratio, and it is perhaps
the most widely quoted measure of association in two-by-two tables. We may
rewrite it (pLa/pom)/(PLr/pprF)- The numeratopy s,/ ppa is just an odds ratio
for liking the movie, when we restrict the population to men only; we call it a
conditional odds ratio. Similarly, the denominater, »/ppr is the conditional
odds for liking the movie when we consider only women. The ratio compares the
two; the fartheritis from 1, the more different are the tastes of men and women, and
the less appropriate the independence model must be. In our survey we estimate tf
relative odds ratio to be (855/021)/(0415/012) = (1.214)/(3458) = 0.351.
Thend,y = log(0.351)/4 = —0.262. The fact that our relative odds ratio was
less than one (and sbwas negative) says that in our sample, more women than
men liked the movie.

You should notice that as a reflection of the one degree of freedom available to
thed’s, their logarithms are all the same size with varying sign. Whenevei'she
are all close to zero, we should probably conclude that we did not need them anc
that the simpler independence model is appropriate.
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There are, of course, 3-way and higher contingency tables, with loglinear models
including various sorts of association with which to summarize them. We will study
some of these in exercises, and later in the book.

1.8 Logistic Regression*

1.8.1 Interpolating in Contingency Tables

You will recall that linear regression allowed us, whenever independent variables
corresponded to numerical settings, to predict what a measurement might be a
other settings. When our responses are counts, we can still, with ingenuity, do
something of the same thing.

Example. A studio wonders whether the popularity of its latest movie has more to
do with the age of the audience than anything else. They do a special screening fo
a number of subjects, some of approximately age 20 and some of approximately
age 40; at the end they are each asked whether they like the movie.

Opinion
Like | Didike
Age 20 | 42 19

40 | 13 51

All the methods of the last section apply. As an exercise, you should estimate
the independence model. When | did so, | was led to the conclusion that it was
not very appropriate here; there is indeed probably some association. This mean
that age does have something to do with opinion: Younger people liked the movie
better.

We can put this as a prediction: If you know the ages of a collection of people,
what proportion of them will like the movie? Express this in terms oftiterated
loglinear model (since thimdependence model assumes that age makes no differ-
ence to opinion). Now, we have already noted that the natural quantity to predict
in a loglinear model is the logit for liking the movie, in particular, toaditional
logits o0 = l0g(p 120/ Pp20) @andisg = l0g(prao/ Ppao), €ach of which refers only
to the patrons of one age.

Pr2o _ log npr20

lo0 = log ——
P D20 npp20

= lognpr20 — l0gnpp2o

= log X120 — 109 Xp20
=+ by + c20+dr20— (0 + bp + c20 + dp20)
= (br — bp) + (dr20 — dp20)-
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In the same waylyo = 109 prao/ppao = (b — bp) + (drao — dpag). But going
back to the last section,

PL20P D40
dr20 — dp2o = 7 log———
2 PD20PL40
and
PL20P D40
dpao — dpao = — log ————.
2 PD20PL40

We have managed to write our predictions of a conditional logit as a centered
model with a middle liking level

1
b, —bp = = log PL20PL40’
2 P D20P D40

to which we add or subtract a correction proportional to the log of the relative odds
ratio.

There are no new conclusions here; but what if you wanted to predict how popular
the movie would be in other age groups, besides those in the survey? We alread
tried linear interpolation in the regression problem; that should work here, too. Let
the new age be, and write its predicted logit ds= log(p./ppx) = +(x —x)b,
wherex = (204-40)/2 = 30isthe average level of the independent variable. Match
this to one of the prediction equations in the last paragraph, tp getb; — bp
andb = (dpao0 — dpao)/ (40— 30).

Using the standard estimates, the cell proportions, we pgae— 142.25 = 0.336,

pp20 = 0.152, pya0 = 0.104, andppgo = 0.408. Theni = 1 5109(0.336 x
0.104)/(Q152 x 0.408) = —0.287 andh = —2—10Iog(0.336 X 0.408)/(0152 X
0.104) = —0.108. Then we have a regression equation for predicting the logit,
[ = log ;’“ = —0.287—-0.108(x —30). Ifthis model is reasonable, what proportion
of 25-year-olds would we expect to like our movie? The predicted logit, conditional
on agex = 25, isls = log(p.2s/ pp2s) = 0.253.

The slashes in Figure 1.14 show the estimated logits at the two survey ages, 2(
and 40. The dotted line shows how the regression equation estimates the logit a
age 25 by interpolation.

This does not answer our question about the proportion of favorable reactions;
but fortunately, that information can always be extracted from the logit. Notice that
(Prx)/(pLx + Ppx) = (PLx/PDx)/(PLx/ PDx + 1). The logitl is the logarithm of
these fractions; but we know thelt9® = a; so p../pp. = €'. Then the proportion
favorable isp = ¢/ /(¢! + 1).

Proposition. Given a proportion p and itsoddso and logit/, p = o/(1 + o) and
p=é/+1)=1/(1+e7).

Our estimate of the proportion of favorable patrons of age 25 would be
e0253/(0253 + 1) = 0.563. This is between the 69% of 20-year-olds and the
20% of 40-year-olds, as we intended.
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FIGURE 1.14. Logit for liking as a function of age

1.8.2 Linear Logistic Regression

The method illustrated above is an exampléagistic regression, which may be

used to predict the proportion of “successes” in some experiment when there are
numerical settings to the independent variables that we can interpolate. It possesse
all the powers of linear regression and requires the same care—interpolate with
caution, extrapolate doubly so. We certainly need not restrict ourselves to the cas
of only two settings for the independent variable.

Example. Three different concentrations of a new ant poison are applied to a
number of fire ant nests, and we record whether or not the nests are destroyed:

Concentration
100 mg/l 200 mg/l 300 mg/l
Destroyed  Yes 15 20 25
No 17 11 8

We can estimate the conditional logits just from the ratios of the counts in each
column and plot them against the concentration (see Figure 1.15).

The x’s show the estimated logit at each concentration. They are, of course, not
exactly on a straight line, but they are plausibly close to the one we have drawn.
So a logistic regression equation of the form Jag/pyx = [ = u + (x — )b
is a plausible summary of our experiment, wheiie the concentration of poison,
and sar = 200 mg/l is the center of our three concentrations.

Let us estimate this equation by the line drawn (by eye) on the plot, which
happens to bé= 0.538+ 0.00632¢ — 200). We had a good bit of success with
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FIGURE 1.15. Logit for success as a function of poison concentration

300 mg/l; so we are tempted to try 400. Before we buy the poison, we may as
well use logistic regression to predict the result. Of course, thigtispolation

(see Section 5.1), so we would be foolish to take the conclusion too seriously.
Anyway, | = 1.802, and we translate that to a proportion of successful kills
p = e*89%/(e1892 1 1) = 0.858. You will have to decide whether that is a good
enough success rate to justify the experiment.

Of course, we have nottold you how to find the line on the plot. Reliable methods
for estimating logistic regression equations will have to await a later chapter. There
are, of course, logistic regression models for far more complicated experiments.
Just as in ordinary regression of measured data, our experimental results ma
consist of any number of values of one or several independent variables, so long
as the dependent variable records simply whether that experiment was a “success
or a “failure” (like/dislike, male/female, or any othdichotomous outcome).

1.9 Summary

In this and subsequent chapter summary sections we will briefly review the key
technical terms and the most important mathematical expressions that should nov
have meaning for you after studying the chapter. If any of these are at all fuzzy,
it is time for you to study those sections more carefully. When you see a notation
like (3.4) it will mean section 3, subsection 4 of the current chapter.
First we studiedinear models for experiments where we try to measure some

important numbers (such as people’s blood pressure), but for some reason ou
measurements are not all the same. We can estimate the “true” palising
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the sample mean i = %Z?le,- = x (2.2). Often, different subjects of your
experiment will undergo differerevels of a treatment (such as types of drug).

In that case, the model that describes the experiment is calbed-aay layout

(3.1). We try to discover whether the different levels lead to consistent differences
in our measurements, and we express the resulf;as n; = p + b; so that

the b’s tell us how different théth level is from the average leval (3.2). If the
observations were subjected to more than one sort of treatment at the same tim
(for example, bed rest or not, as well as drugs), we hawe-avay (or more) layout

(4.1). Sometimes, these data may be described well enoughdmjdiive model

Xijk = n+b; +c;, where the’s tell us the effect of levels of the second treatment
(4.2). Often, though, that will not be sufficient, and we will need toiatigtaction
termsd;; that tell how differently thej levels affect the individual levels (4.4).
When the experimental levels correspond to numerical settings (such as dosage
of a single drug), we may be able to predict the results of future measurements
usingregression models (5.1). For a single predicterof a measurement, we

may start with aimplelinear regression model that looks liKe = p + b(x; — X)

(5.2). The extension to several predictor variables gives maltple regression
model, such a$; = p + (x1; — X1)b1 + (x2; — X2)b2 (6.2).

On the other hand, our data may consist of categorized counts (as from a political
poll); we summarize the results wiglopulation proportions p;, which predict the
count in theith category byt; = np;. We usually estimate these by tkample
proportion p; = x;/n. When we have two ways of categorizing counts (such as
gender and party preference), we constoootingency tables (7.1). When it may
be that certain classifications have nothing to do with each aitidspendence
models provide an important simplification. These look ltke= np;.p.; (7.2).

A powerful way to express many models for counted data will béoglénear
models (7.3), for example in a two-way contingency tablexlpg= n + b; +

cj +d;;. Thed;; measure the failure of the independence model, which we call the
association between the two kinds of categories (7.5). When we want to predict
proportions from numerical experimental settingsve often usegmple linear)
logistic regression, which looks like logg,/py:) = = u + (x — )b for the
case of Yes or No categorization (8.2).

1.10 Exercises

1. Sciencemagazine in 1978 announced that various American lunar probes had
obtained the following values for the ratio of the mass of the Earth to that
of the Moon: 81.3001, 81.3015, 81.3006, 81.3011, 81.2997, 81.3005, and
81.3021.

a. Draw a hairline plot or similar graphical display of these measurements.
b. Compute the sample med@n= x for these numbers, and mark it clearly
on your plot.
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c. Compute the residuals from this location model. Now compute the sum
of these residuals. Did you get the answer you were supposed to?

. In 1982, Sternberg et al. reportedSaence on the level of an enzyme called

DBH in the bloodstream of a number of schizophrenia patients. The pa-
tients were separated into groups that were judged by clinicians to be either
psychotic or nonpsychotic:

psychotic: 0.0150, 0.0204, 0.0208, 0.0222, 0.0226, 0.0245, 0.0270, 0.0275,
0.0306, 0.0320

nonpsychotic: 0.0104, 0.0105, 0.0112, 0.0116, 0.0130, 0.0145, 0.0154,
0.0156, 0.0170, 0.0180, 0.0200, 0.0210, 0.0230, 0.0252

a. Draw parallel hairline plots of the DBH levels for the two clinical groups.
What does this suggest to you about the effect of clinical status on enzyme
level?

b. Find the standard (sample mean) estimates of a one-way layout model.
Mark the group centers on your plot.

c¢. Find the standard estimates of a centered model for this experiment.

. Four different shrimp nets are under consideration for use on your shrimp

boat. On 16 days with acceptable weather conditions, you note the yield in
hundreds of pounds, using each net on 4 randomly chosen days:

InSein 75 | 82| 91 | 93
Crusty 51 [ 58| 62 | 76
Hample 90 | 53| 56 | 84
NetProfit | 112 | 78 | 104 | 97

a. Draw parallel hairline plots of the performance of each net. Mark the
sample means on each.

b. Construct standard estimates of a centered one-way layout model for this
experiment.

. We claimed that the centered modgl = u; = u + b; is determined unam-

biguously if we know the group centeus, so long as we impose the centering
condition% Zle n;b; = 0. Show that we can always determine whand
b; are if we know theu;, and vice versa.

. Show that the collection of all residuals in the standard estimate of the one-

way layout modely;; — fi;, hasn — k degrees of freedom. That is, even
though there are residuals, you can specify— k of them that would allow
you to compute the remainirigresiduals.

. Nine 20-year-olds who are classified as moderately overweight are recruited

into a three-month weight-loss program. Some will go on a 2000-calorie diet,
some will enter a 30-minute-a-day vigorous aerobics program, and some
will be “controls.” At the end of the program, each weight loss in pounds is
recorded:
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none | diet
none 2 2
7
exercise 4 610
8 1314

a. Is this experiment balanced? Why or why not?

b. Use the standard estimates to find values for the parameters of an additive
model. Plot the resulting model, and interpret it.

c. Find standard estimates for the parameters of the full centered model. Plot
the resulting model. Explain why you do or do not believe this model
substantially superior to the additive model.

. Show that the standard estimates for an additive model turn out to be centerec

in a two-way layout.

. Assume that a two-way layout has equal numbers of observations (Qaf it

each cell. Show that the standard estimates of the parameters in a full mode
for this two-way layout meet the centering conditions.

. You would like to know how much money a higher thermostat setting saves

you during a Houston summer. So for six years in a row you flip a coin to
decide whether to set the thermostat t6F2r 78F for all of August, with
the following bills:

72°: $178, $195, $201
78°: $180, $153, $164

a. Write down and estimate a simple linear regression model for predicting
monthly bills, given your thermostat setting.

b. If you set your thermostat to 76 next August, use your model to predict
what your electric bill will be. Do you find this prediction plausible? Why
or why not?

¢. You decide that air conditioning is bad for you, so next August you set
your thermostat to 8. Use your model to predict your electric bill. Do
you find your prediction plausible? What practical aspects of the problem
might lead you to doubt your prediction?

A sociologist suspects that crowding and heat contribute to violent crime
rates, so she locates medium-size cities near 32 and 40 degrees latitude ar
with population densities approximately 2000 and 6000 people per square
mile. Her 8 representative cities had the following crime rates in 1990 (in
crimes per 1000 population):

32degreesN 40 degreesN
2000/sg mile 8048 60 35
6000/sg mile 9779 6383

a. Construct and estimate a multiple regression model for predicting crime
rate from density and latitude, using the standard estimates for an additive
two-way layout. Plot your model.
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b. I'live in atown that is 37 degrees, 20 minutes north latitude, with a popu-
lation density of 2400 people per square mile. Use your model to predict
its crime rate.

Without telling them what you are doing, you issue some (arbitrarily selected)
soldiers a 25-pound backpack for a strenuous field exercise: 13 out of 49
complain afterwards of muscle or joint pain. The other soldiers on the same
exercise have a 30-pound pack: 23 out of 52 complain of muscle or joint pain.
If in fact there is no connection between pack size and complaints, how many
soldiers in each group would you expect to complain?

A political polling organization would like to know whether upper, middle,

or lower socioeconomic status (SES) has anything to do with whether a voter
considers himself or herself libertarian, conservative, or liberal in political
philosophy. Two hundred voters picked at random were classified on standard
scales into the possible combinations; the counts were as follows:

SES\Phil. Libertarian Conservative Liberal

Upper 17 20 17
Middle 12 45 17
L ower 5 18 49

Under the hypothesis that status and philosophy are independent of one
another, construct a table of the predicted counts for each table entry.
For the expected table in an independence model, you of course compute
Xij = npie.P.j, Where you use the standard estimate for gfse Show that
the row and column sums in this table are always the same as the row anc
column sums;;, andx,; in the observed table.
For the political poll data of Section 7.1, estimate the parameters of a centered
loglinear model.
a. For a general two-way contingency table, derive formulagfatheb’s,
and thec’s of a centered parametrization of thelependence model, in
terms ofn and thep’s.
b. Derive formulas fojx and theb’s, ¢’s, andd’s of thesaturated model, in
terms ofn and thep’s.
For the experiment of Exercise 12 (political philosophy),

a. Compute standard estimates far the b’s, and thec’s of a centered
parametrization of thendependence model.

b. Compute standard estimates foand theb's, c¢'s, andd’s of thesatur ated
model. Interpret the values you get in words.

For the experiment of Exercise 11 (soldier’s backpacks),

a. Compute standard estimates for the b’s, and thec's of a centered
parametrization of thendependence model.

b. Compute standard estimates foand theb's, ¢'s, andd’s of thesatur ated
model. Interpret the values you get in words.
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In Exercise 11, use linear logistic regression to predict the proportion of
soldiers who would complain with a 28-pound pack.
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19.

20.

21.

22,

23.

A common alternative to the sample mean to estimaite a location model
is thesample median: Sort the observations in ascending orggy < x2) <

- < Xx(). The median is then in the middle of that list: (i)sifis an odd
number, then the median is the middle numpet x n1); and (ii) if n is an
even number, the median is conventionally the average of the two numbers
flanking the middlgz = (X(n/z) + X(n/2+1))/2.
Find the sample median of the mass ratios from Exercise 1. How does it
compare to the sample mean?
Three long-distance telephone companies, BSS, CMI, and DWP, are compet-
ing for your business. To evaluate the impacts of their rates, you test them on
15 quite similar branch offices of your company, randomly assigning 5 offices
to each carrier. Here are their phone bills for the same month, in thousands
of dollars:

BSS | 20| 23| 25| 32| 21
CMI | 39| 21| 22| 36| 23
DWP | 50 | 33 | 46 | 42 | 38

a. Draw parallel hairline plots of the observations for the three carriers. Mark
on them the sample means for each level.
b. Estimate the parameters of a centered one-way layout model.

a. Use the sample median of each group to estimate the one-way layout
model in the schizophrenia data from Exercise 2.
b. Use the results from (a) to estimate a centered model for this experiment.
Compare your estimates to what you got in Exercise 2 (b) and (c).
Demonstrate that we could just as well have defined a balanced design to be
one in which the numbers of observations in each cell in ealthmn were
proportional to those in the other columns.
You want to compare, over the year 1995, how the three locations of your
identically sized pizza restaurant are doing. Somebody points out that because
of weather, school, and so forth, the time of year affects sales. So you record
the total dollar sales (in units of $10,000) at each location in each season to
get the following data: for Price’s Fork, Sp(ring) 34, Su(mmer) 30, Au(tumn)
34, Wi(nter) 34; for North Main, Sp 34, Su 14, Au 26, Wi 21; and South Main,
Sp 44, Su 27, Au 37, and Wi 30.

a. Estimate the parameters of an additive model in this two-way design.
b. Estimate the parameters of the full model in this design. Comment on the
differences between the two.
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24,

25.

26.

27.

28.

1. Structural Models for Data

Show that in anybalanced two-way layout, the standard estimates for the
parameters of the full model are centered.
An example of dalanced incomplete block design for a two-way layout is

1 2 3
1] xu1 | x2
2| xn X23
3 X32 | Xa3

where we have taken only six observations, yet we can still estimate a centerec
additive modek;; = n + b; + ¢;. We might wish to do this if observations

are very expensive.

The standard estimates afie= x, by = %(xn + x12) — %(le + x23 +

X32 + X33), andéz = %(le + x23) — %(Xll + x12 + x32 + x33). Find the
corresponding estimate fég. Assuming column corrections are estimated
just as row corrections are, find standard estimates far'she

For a balanced incomplete block experiment (see Exercise 25) to estimate the
breaking strength of three beam cross-sections (A, B, C) made of three stee

alloys (1, 11, 1l1), we got, in thousands of pounds,
I Il |
A | 352 281
B | 18.7 40.3
C 31.6 | 60.5

What does an additive model predict for the typical breaking strength of a
beam with cross-section B made from alloy I? Compare it to the actual result.
How many degrees of freedom for residuals does this model have? What does
your model predict for the untried case of cross-section A and alloy 111?
There is a more complicated linear regression problem for which a standard
estimate is easy to guess. We will assume that there are three distinct value:
of the independent variable, equally spaced (for example, 10, 20, 30). Fur-
thermore, the number of observations at the highest and lowest levels of the
independent variable must be the same. Then the average of all observation
should give you a predicted value for the middle level of the independent
variable. Furthermore, the slope of the regression line should be the slope of
the line connecting the averages of the observations at the highest and lowes
levels (because the slope does not affect your middle-level prediction, which
is at the fulcrum around which the line is free to rock).

a. Write down a precise notation for such an experiment and for a simple
linear regression model for predicting it.
b. Write down the standard estimate of your regression model.

The highest-volume item at your beach supply store is a certain brand of
sunscreen lotion. You would like to know how your price affects your weekly
sales volume. You try three different prices for various weeks during the
summer, with the following unit sales:
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$2.50: 82, 74, 83
$3.00: 55, 54, 61, 58
$3.50: 40, 46, 37

a. Construct a plot of these numbers, marking also the sample mean of eact
group.

b. Calculate the standard estimate of a simple linear regression model for
predicting unit sales from price (see Exercise 27). Draw the prediction
line on your plot. Does the model seem plausible? Why or why not?

c. Predict unit sales for a week in which your price is $2.79. Now predict the
number of units you would get rid of if you gave sunscreen away for free.
Comment on the plausibility of your predictions.

29. You have surely noticed that in our two-by-two examples of regression we
insisted on using an additive model. What would have happened if we had
used the full model instead?

a. Write down a model that looks like
Vi = w4 (xir — X0)b; + (xiz — X2)b2 + (xi1 — X1)(Xi2 — X2)b12

in Exercise 10, and estimate the new paramiigby setting the last term
equalto one of the interactions in the full model. Recalculate the prediction
in (b). (The new model, which makes sense for any nhumber of levels of
each of the independent variables, is callduilaear model because it is
linear in each independent variable if the other is held fixed. Here it has
four degrees of freedom.)

b. Write down what a multilinear model in some larger number of
independent variables would look like.

30. Young people on the lookout for prospective husbands or wives often claim
that certain cities have more women or more men. To study this issue, you
sample the voter rolls in three cities looking for people who are between 20
and 30 years of age and single. Here are the numbers of those you find, by

gender:
New York Chicago Houston
Males 230 211 297
Females 312 225 255

Your question might be addressed in the following way: An independence
model would mean that the proportions of men and women did not depend on
which city you looked in. So you should define and find standard estimates
for an independence model. Then build a table of expected values. Comment
on what the comparison between the two tables says about the question yoL
began with.

31. For the survey of Exercise 30,
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32.

33.

1. Structural Models for Data

a. Compute standard estimates far the b’s, and thec’s of a centered
parametrization of thendependence model.

b. Compute standard estimates foand theb's, ¢'s, andd’s of thesatur ated
model. Interpret the values you get in words.

Sometimes in a two-by-two contingency table experiment, the count in one
of the cells isunobservable. We believe that there is a count, but we do not
know what it is:

1 2

1| nu | ne
2 no1 ?

a. It is still possible in this experiment to estimate the parameters of an
independence modgl; = np;.p.;. Thenwe could, with a little ingenuity,
predict the unknown count,,. Find standard estimates, using all the
available information, of the parameters of the independence model in
this experiment. (Do not forget thats also an unknown parameter in this
case.)

b. This method may be used to correct census undercounts. The people ir
a census tract are counted by two methods we believe to be independen
(say, mail and visit). Then;; = people counted by both methods, =
people counted by mail but not by visit;; = people counted by visit
but not by mail, and:,, = people counted by neither method (obviously
unobservable). Use the model from (a) to estimatadbad population of
a certain census tractsf; = 12,384 11, = 589,n,1 = 1466.

Ultrapasteurization of cream requires it to be heated to a very high temperature
for a short time. We count how many pints have spoiled under refrigeration
for two weeks after ultrapasteurization at two temperatures:

170°F  180°F
Spoiled 9 3
Good 21 27

a. Write down and estimate a linear logistic regression model for the rate of
spoilage at various temperatures. Plot your equation.

b. Use your model to predict the proportion of pints of cream that would
spoil within two weeks if they were originally heated to 2F6Do the
same for a temperature of 160 How confident are you about these two
predictions?

A three-way contingency table consists of counts resulting from an ex-
perimentx;;;, where there are = 1,...,!I levels of the first treatment,

Jj = 1,...,m levels of the second treatment, ahd= 1, ..., g levels of

the third treatment. Theomplete independence model of this experiment
looks ”ke)?l‘jk = TNPieePejeDesk-

a. What does this model say about your experiment? Write down standard
estimates of the parameters in the complete independence model.
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b. Invent a notation for the centered, loglinear parametrization of this model.
Be sure to specify your centering conditiohlint: You need four kinds
of parameters.

35. You want to find out how many people in various walks of life still smoke
cigarettes. You note during your poll whether the responder is male or female,
and whether he or she lives in arural or urban area. Your results are as follows:

Rural Urban
Male 23 43
Female 27 52
Smokers
Rural  Urban

Male 43 135
Female 32 118
Nonsmokers

a. Define and estimate a complete independence model for this experiment.
b. Write down a table of expected counts under this model. How well does
the model match the facts?

36. With three-way contingency tables we can propose a great variety of models
for the results of an experiment. For examplepaditional independence
model would be one that says something like this: the second and third
treatments are independent of each other, for each level of the first treat-
ment. That would require us to say, about our proportigng,/ piee =
(Pij-/pin) (piek/ Pies)- After cancellation, we see that our predictions must
beX;jx = n(pijeDiek)/ Dies-

a. Write down standard estimates for the parameters in this model.
b. Write down a centered loglinear version of this model, including centering
conditions Hint: There should be six kinds of parameters.

37. Estimate thep’s of a conditional independence model for the survey in
Exercise 36, where you assume that gender and location are conditionally
independent of one another for each of smokers and nonsmokers. Construc
a table of expected counts under this model. In words, what does this model
say about your experiment? How well does it match the facts?

38. Linear regression can be generalizedotbynomial regression by making
terms that involve the square, the cube, etc. of the independent variable into
additional independent variables. To illustrate this, estimate a model for the
case of Exercise 27 (three equally spaced design points) with

$=u+blx—%)+clx —x)%

by interpolating the sample means at each design point. Apply it to the data
of Exercise 28 and redo part (c) with your new model. Do you find the results
more or less convincing than before?
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CHAPTER 2

Least Squares Methods

2.1 Introduction

In the last chapter we considered models that summarized the measurements th
we obtained in several kinds of experiments. We ran into two sorts of difficulties.
First, we had nothing but our practical intuition to tell us how good a job we had
done when we summarized our data. Sometimes our averages and our regressic
lines nearly equaled each data point; the difference could be attributed to mea-
surement “noise.” At other times our numbers were all over the plot, and only our
faith in the simplicity of nature led us to take our elementary mathematical models
seriously. We need some sort of index to score how well we do when we reduce
the data to these expressions.

Second, we found for most of our regression models no good way to estimate
the parameters. We need reasonable, repeatable estimators for regression mode

Fortunately, in 1805 the French mathematician Adrien Marie Legendre pro-
posed a beautiful solution for both of our problems: the methddast squares.
This simple idea based on coordinate geometry will give us a powerful, unified
way to deal with all the measurement problems discussed in the last chapter (anc
many more).

Time to Review

Vector algebra
Matrix algebra
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2.2 Euclidean Distance

2.2.1 Multiple Observations as \ectors

We pointed out at the beginning that our measured respansesild be thought

of as points on a number line. In a similar way, our regressiatter plots were
graphs of pairs of coordinates; ( y;) for points in the plane; we again translated
numbers into geometrical objects. We can take this idea one radical step further
and pretend that an entire sample of observatignfer i = 1,...,n are the
coordinates of a single vector irdimensional space, this despite the fact that
we cannot readily visualize figures or plot points in a space of more than three
dimensions. Nevertheless, it will turn out that we can use methods from analytic
geometry to work with thessample vectors.

We need to translate our measurements into vector and matrix notation. First of
all, we will follow the convention that a vector is written as a boldface, lowercase
letter, such ag. When we expand the vector into its component coordinates, we
will use matrix notation. A vector is conventionally an x 1 matrix, acolumn, of
coordinates:

Xi

Xn

This is a bitinconvenient when we are writing text in a line, so we will often use the
transpose operator (which interchanges rows and columns of a matrix) to change
a row vector to a column vectax:= (x;, ..., x,)7.

Example. On Monday through the following Sunday, | note how long | have to
wait for my hamburger at my favorite local lunch counter. The answers, in minutes,
arex = (12,15,9, 10, 14, 16,14)".

The usual situation when we are analyzing multiple measurements of the same
sort is that we have some theory that says thatithenaumber ought to be;;
but when we actually did our error-prone experiment, wexgofo we ask how
far apart the sample vectax and the theoretical vecter = (i1, ..., u,)" are.
Analytic geometry suggests that we find tleagth of the vectorx — p from the
hypothesis to the experiment, called thaclidean distance from x to p. Notice
that theith coordinate of this vector ig — u;, the residual defined in 1.2.2 (when
we say this, we mean that you can look for the earlier discussion in Chapter 1,
Section 2.2).

Example (cont.). The manager of the lunch counter announces that typically
one should have to wait about 10 minutes on weekdays and 15 minutes on
weekends. His theory (we usually call it a model, or hypothesis) says that
p = (10,10, 10, 10, 10, 15,15)". Then the residual between our data and his
modelisx — u = (2,5,-1,0,4,1, -1)".
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FIGURE 2.1. Pythagorean theorem

FIGURE 2.2. 3-D Pythagorean theorem

To remind you how to calculate this length. Let us look at the graphable case of
two measurements (Figure 2.1): The Pythagorean theorem tells us that the length
the residual vector, the hypotenuse of the triangle/($; — 1) + (x2 — u2)2.

You will probably have seen the corresponding expression, with three squared
coordinate differences under the square root, for the length of a vector in three-
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dimensional analytic geometry (Figure 2.2): We proceed to define fearlessly, for
the case of any numberof measurements:

Definition. The Euclidean distance from ann-dimensional vectoy: to ann-
dimensional vectox is

" 1/2
VL — 102+ (x2 = p2)? + -+ (6 — )2 = [Z(xi - m)z} :

i=1

2.2.2 Distancesas Errors

How do statisticians use the length of the residual vector? The basic idea is tha
if we have two competing theories or modgl®) and;.(@, then the experimental
results tend to favor one or the other if the observed vectisr closer to the
theoretical vector, that is, if the residual vector for that model is shorter. Since
we are usually only checking which length is less, statisticians most often save
themselves calculation by not bothering to take the square root:

Definition. The sum-squared error in a samplex for a modelu is SSE =
" (x; — 1i)?, the square of the Euclidean distance frarto x.

Example. In the speed-of-light data from Chapter 1 (see 1.2.1) we know that the
true speed is (299,)710.5. If we let each of the 23 coordinates in the model vector
p be equal to this value, then you may compute that

SSE= (883— 710.5)2 + .-+ (723 - 7105)2 = 289,478.
In the lunch-counter data, SSE 48.

Even though this is the single most useful measure of closeness in statistics, we
find certain variations handy at times. Since we tend to repeat our measurement
as many times as we can afford, hoping that we will get a bit more accuracy, the
sample size usually has nothing to do with the scientific issues we are studying.
But the SSE obviously grows with sample size as we add more squared coordinats
differences. This has led us to defineaveraged version of the squared error:

Definition. The mean-squared error in a samplex for a modelu (proposed
before the experiment is carried out) is MSEX Y — )2

n

Example (cont.). In the speed-of-light data, MSE= 12,586. In the lunch-
counter data, MSE= 6.86.

This gives us a rough idea of the quality of a typical observation from the point
of view of the model. It has, however, one obvious failing that is clearly our fault:
If the measurements are in some units such as, say, grams, then the MSE is in uni
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of grams-squared. These are likely to have no meaning for us. So we sometime:
repair an earlier adjustment and take the square root of the mean-squared error:

Definition. Theroot-mean-squared error in a sample< for a modelw is
1 1/2
RMSE = +/MSE = [ > i - M,-)Z} )
nia

Example (cont.). In the speed-of-light data, RMSE 1122 km/sec. In the
lunch-counter data, RMSE 2.62 minutes.

The RMSE, and its many special cases depending on the sort of model we are
studying, is perhaps the single most intuitively useful summary of how well our
experimental setup seems to be matching the model. It is a sort of typical absolute
difference between an observed and a predicted value.

2.3 The Principle of Least Squares

2.3.1 Smple Proportion Models

Often we have only a partial idea about what sort of simple model does the best
job of matching our data approximately. We noted earlier that Euclidean distance
could be used to pick from among several alternative models, according to how
close they are to the observations.

Example. In the lunch-counter problem, my personal opinion was that it takes
about 15 minutes to be fed every day. Therefore, | proposed another miet,

(15, 15,15,15,15,15,15)". Its SSE is 73. The manager’s claim looks slightly
better, because its SSE is smaller.

But can we apply this approach when there is an infinity of choices?

Example. In the early decades of the twentieth century, astronomers had found
that they could tell how fast objects in the sky were moving toward us or away
from us by using the Doppler shift in the color of their light (just like a traffic cop
catching speeders using radar). With much more difficulty, they had also found
ways to tell how far away some objects were. In 1927, Edwin Hubble juxtaposed
those two facts about 24 galaxies:
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velocity distance velocity distance
(km/sec) (1,000,000 (km/sec) (1,000,000

par secs) par secs)
170 0.032 650 0.9
290 0.034 150 0.9
—130 0.214 500 0.9
—70 0.263 920 1.0
—185 0.275 450 1.1
—220 0.275 500 1.1
200 0.45 500 1.4
290 0.5 960 1.7
270 0.5 500 2.0
200 0.63 850 2.0
300 0.8 800 2.0
-30 0.9 1090 2.0

He of course drew a scatter plot (Figure 2.3):

After staring at this a while, you will probably come to the same conclusion
Hubble did: The faster a galaxy is moving away from us, the farther off it is (with
quite a bit of variation in the peculiar motions of each galaxy). If this is a general
law, then we see a way to exploit it: Since itis easy to observe the outward velocity
of a distant galaxy, we can use some simple law dike kv to estimate roughly
the distancé, wherek is our hypothesized proportionality constant. (One possible
such relation is given by the sloped line on the plot.) To this day, this is the most
common way to estimate the distance of newly discovered galaxies.
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Astronomers soon suggested an implication of our model: Perhaps the universe
is expanding. The expansion rate is measured by the Hubble constantHigk
eventually led to the famous big bang hypothesis for the evolution of our universe.

2.3.2 Estimating the Constant

Butwhat isk? If we knew some physical mechanism for expansion of the universe,
maybe that would tell us; but at this time we do not. Instead, we shall &yitoate
our k by assuming aegression modeld = kv similar to those of the last chapter
(see 1.5.2), but with only the one parameétetUnfortunately, Chapter 1 gave us
no clue as to how to estimake except by eye. Now to Legendre’s great step: We
may phrase the problem as one of Euclidean distance. We want to cheusk
that the vector of distancekis as close as possible to the vector predicted by the
Hubble modell = kv. Equivalently, we want somehow to pick out ¢hat makes
SSE= )" ,(d; — d;)? as small as possible (since making tHyeared distance
small is just the same as making the distance small, if all we want is thekjight
We have a name for this:

Definition. If we choose the parameters of a model for predicting observed mea-
surements by making the Euclidean distance from the observed vector to the
predicted vector as small as possible, we are applyingngtkrod of least squares
(because we are minimizing the SSE).

How is it possible to findt, since there is an infinite number of possible values
to compare? We shall use some ingenuity:Lstind forany other possible value
of the proportionality constant in the Hubble model, besikleShen if k is the
least-squares estimate, we know that awgys , (d; — [v;)? > Y7 (di — kv;)?.
Here comes the first trick: Subtract and adi / on the left-hand side to get

(di —1v;)? = (di — kv + kv; — 1v;)2.
Z Z

=1

Now expand the square in the second expression, using the first two and last twc
terms:

D i =) =) (di —kv)? +2) (kv — v)(di —kvy) + Y (kv — [v;)?
P i1 i1 i=1

> >~ ku)
i=1

We can cancel out the identical sums on the two sides of the inequality and factor
out some constants from sums to get

20k — 1)y " vi(d; — kvy) + (k = 1)* > " v? > 0.
i=1 i=1

To review, this inequality must always be true, no matter whiat if k is the
least-squares estimate. But the second term must always be at least zero, becau
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it is a sum of squares. The first term is more of a problem: Sinsdree to be
anything, the term can obviously be either positive or negative. One more bit of
ingenuity: We can make the first term zero, and therefore never negative, without
paying attention ta, by settingd_;_; vi(d; — kv;) = 0. This is called theormal
equation for this least-squares problem. To solve it, split the sum and move the
minus sign to the other side of the equation to &t , vid; = k> ", v2. We can

solve this fork whenever we do not have to divide by zero, that is, when all the
V's are not zero. In that case we have an estirhated""_, v;d;/ Y_; v?.

This estimate gets rid of the middle term in the big equation above, leaving
S (di — 1) =30 (di — kv)? + (k= 1)?3."_, v2. Now we know we have
succeeded; since okmeets the normal equation, it always has the smallest SSE:
In any other case df we have to add that positive last term, which makes the SSE
larger.

This equation has a practical application; if we are curious about what happens if
we use another value bthan the least squares value, we may use itto calculate how
much further away the prediction vector is from the observation vector. Another
use of it comes about wheén(which, remember, can be anything) is set equal to
zero. Theny !_, d? = 3" (d; — Iv;)? + k*Y_|_, v?. The Pythagorean theorem
has appeared once again: You can read this as a relationship between the squar
length of the observed vectdy the squared length of the vector of residuals, and
the squared length of the vector of predictimisWe do this so often in statistics
that we have names for the ternys;_, d? is called the fotal) sum of squares,

TSS; the next term we already know as the sum of squares for error, SSE; anc

>'_, v?is called thesum of squares for regression, SSR.

Example (cont.). For Hubble’s model, you should check that= 0.001922
where SSE= 5.469. This is the slope of the line we drew on the scatter plot.
Therefore, if we observe that a galaxy is moving away from us at 600 km/sec, we
would expect it to be about 600 0.001922= 1.15 million parsecs distant.

Let us summarize all our mathematics as follows:

Proposition. To predict a vector of dependent variables y from a vector of
independent variables x using the regression model y = xb,

(i) theleast squaresestimate isa solution of the normal equation 7, x;y; =
b 3", x2, because then
(i) Y0 yOv — exi)? = Y0y (i — bxi)? + (b — )2 Y1, x7 for any parameter
value;
(iii) inparticular,ifwechoosec =0, 3" | y2 =31 (yi — bx;)> +b* Y1, x2,
which we conventionally write TSS= SSE+ SSR

All that | have done here is to use generic letters for the special symbols from
the Hubble problemy for d, x for v, andb for k.
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2.3.3 Solving the Problem Using Matrix Notation

The result above is so important that anything we can do to understand it better
will be useful. First we will translate it into matrix notation. Remember that
wherex is a vector and: is a constant is the vector we get by multiplying each
coordinate of in turn bya. Second, amnner product of any two vectors and

y, expressed in terms of their coordinatesgisy = >__; x;y;. This can also be
written in terms of matriyproducts, which you should review:

y1

(c1---xa) | ZXTYZZXiyi-
i =1
In particular, this means that the squared length of a vector may be wiitter

i xiz'

Now we retackle our problem, to find thethat makes (y- xb)"(y — xb), the
sum of squares of residuals, as small as possible. Againbkany possible value
of the slope, and subtract and addto get

(Y = xc)'(y = xc) = (Y = Xb 4+ X[b — c])T(y — xb + X[b — ¢]).

Now we can expand this “square” just as before, because matrix multiplication
and addition distribute and associate just like the ordinary operations:

(y = xc)'(y —Xc) = (y — xb)(y — xb) + [b — c]x"(y — xb)
+(y = xb)'X[b — ]+ [b — c]x"X[b — ].

This is not quite the same as before, because there are two middle terms. Howeve
these happen to be the same (they are just the inner product of two vectors, listing
the vectors in different orders). Our middle term is then just-2[c]x " (y — xb).

The new normal equation to get rid of this ternxigy — xb) = 0, which can be
solved whenevex = 0 to geth = xTy/x"x. Our decomposition has become

(y — xc)T(y — xc) = (y — xb)"(y — xb) + [b — ¢]*>x"x.

(You should decode these last three expressions to check that we got the sam
thing before, when we were using summation signs.)

Why have we done the same derivation twice? Because much later the matrix
notation will be essential for similar but harder derivations; and we have given
you some practice with it while you kept in mind what it really meant in terms of
summation. But there is something deeper here: Remember from vector geometn
that if two vectorsx andy are both not zero, then their inner produéy = 0
exactly when they are aight angles to each other. In fact, im-dimensional
analytic geometry, this is theefinition of a right angle. Therefore, our normal
equation (leaving thé in but with ¢ chosen to be zeroxp)™(y — xb) = 0 may be
restated as follows: Choose the paramétauch that the vector of predictiong/)
is at right angles to the vector of residuals{ xb). (In fact, this is the meaning of
normal in geometry.) You can see from Figure 2.4 where the theorem of Pythagoras
comes in. Further, you can see that our whole argument is just a familiar theorem
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FIGURE 2.4. Geometry of least squares

from Euclidean geometry: To find the shortest distance from a pgjrib(a line
(xc for any number), drop aperpendicular. It hits the line at some poinkp),
and we call that value of the constdnbur least-squares estimadte

2.3.4 Geometric Degrees of Freedom

Now we will use our geometric picturesto reinterpret the idea of degrees of freedom
(see 1.3.3). Imagine that we have not carried out our regression experiment yet
but we know which: values of the independent varialxeve will use as settings
when we later observe our dependgist Here is what we already know: The
vectory — xb, whatever it turns out to be, will be perpendicular to the predictions
xb. With two observations, it may turn out to be any point on a certain line through
the origin (imagine sliding the dotted line— xb down to where the coordinate
axes intersect, as we have done in Figure 2.4).

With three observationg,—xb may be any point in a wholdane perpendicular
to the vectokb, thatis, a two-dimensionalibspace of our coordinate space (Figure
2.5).

Generally, our residual vector will be a point in the-{ 1)-dimensionahyper-
plane through the origin and perpendicular to the vector of possible predictions.
(We need: coordinates to determine a point in the space of sample vectors. Let one
coordinate axis be at an angle, in the directiofihe remaining: — 1 coordinates
are needed to determine any vector at right angles to this one.) This turns out to be
the geometrical way of looking at an issue we discussed in the previous chapter
When we say that the predictions have 1 degree of freedom, we mean that the
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FIGURE 2.5. 3-D geometry of least squares

lie in a 1-dimensional subspace (varying according to possible valugs\tfhen

we say that this leaves— 1 degrees of freedom for the errors, we mean that the
residual vectors lie in am(— 1)-dimensional subspace of the data space. We will
greatly exploit this interpretation later.

We would now say that SSE Y " ;(y; — bx;)? is the squared length of the
vector of residualy — xb, which lies in a known# — 1)-dimensional subspace.
Somewhat conventionally, when we average the squared errors, we average over tf
number of dimensions (degrees of freedom) rather than the number of observation:
to get the mean squared error MSE2; 37 (i — bx;)?. At the beginning of
this chapter (see 2.2) we divided hyecause we assumed that the predictjons
were given in advance of observation, and so the residual veeton could lie
anywhere im-dimensional space.

Example. In Hubble’s problem, MSE= 5.469/23= 0.2378. Then the RMSE
4/0.2378= 0.4876; in this data set, we typically misestimated the distance by not
quite half a million parsecs.

2.3.5 SchwarZ slInequality

One more interesting fact comes out of the least-squares method: Remember the
when we letc = 0 in our proposition, we go} ", y? = Y7_,(yi — bx;)? +
b?Y"" ,x2. We can conclude from this that since the first term on the right
is at least zero, thed_"_; y? > b2>""_; x?. Now substitute our least-squares

estimateh = ', x;yi/ Y1, x2, which makes the sum of squares of residu-
als 0_F_;(yi — bx;)?, the term we threw away) as small as possible. Then the
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inequality is as close to an equality as it can be, and we get

n n 2 n
2= (zy) I3
i=1 i=1 i=1

Moving the denominator to the left side, we get a resultimportant enough to name:

Theorem (Schwarz's inequality). (31, xiyi)° < Y, 23", y2 and we
have equality just wheny and x are proportional (that is, when thereisa b such
that each y; = bx;, and so all residuals are 0).

Mathematicians love this fact, because it applies to any vectors at all, is amaz-
ingly simple, and is not at all obvious. It is the first result we have called a theorem,
and not just a proposition. You will see an application of it later in the chapter,
others later in the book, and yet others throughout your study of mathematics. We
have followed the mathematician’s habit of giving it a name; that is how we will
remind you of it from now on.

2.4 Sample Mean and Variance

24.1 Least-Sguares Location Estimation

Our first summary model for measurements in the last chapter was the location
model: We imagined that ourrepeated measurements were unimportant errors in
measuring a common constantWe can estimatg by least squares: Latbe the
vector of measurements; then our vector of predictions is (u)T, since every
prediction is the same. To write this as a regression problem, we use the notatior
(1---1)T = 1for a vector of all ones. Them(- - - )T = 1u just multiplies each

1 by the constank. Now we have a regression equation like Hubbl&'s: 1.,
wherey has been replaced bryb has been replaced y, andx has been replaced

by 1. Ourleast-squares estimateistiies: > 1x;/> " ;12 =1%" & =x.
Interestingly enough, the least-squares estimate for the location model is just the
sample mean, our standard estimate from the last chapter. So we see another reas
that the sample mean is important. Let us, as promised, list some of its properties

Proposition (properties of the sample mean).

(i) x istheleast-squares|ocation estimate for the sample vector Xx.
(i) Add a constant to every observation: x; +a. Thenx +a =X + a.
(i) Multiply every observation by a constant: bx;. Then bx = bx.
(iv) Thesumof theresiduals ) " ,(x; — %) = 0.

We will let you show why (ii) and (iii) are true, as an easy exercise. We discovered
(iv) in Chapter 1 (see 1.2.2).
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2.4.2 Sample Variance

To measure how well the mean describes our observations we have=SSE
' (x; — %)% and adjusted for the number of degrees of freedom, MSE

nfll Yo (i - x)2. This Ias_t q_u_antity tells us how spread out the results typically
are from their center. Statisticians have found it to be so enormously useful that
they have given it a special name and notation:

Definition. Thesample variance of a sample vectax is the mean-squared error
about the sample mead = -1 3" (x; — %)% Thestandard deviation is its

square root, = ,/s2, the root-mean-squared error absut

Our Pythagorean law for location beconjgs_; (x; — v)? = 1, (x; — X)? +
n(x — v)? for any numbep. Dividing by » — 1 and solving for the sample variance,
we haves? = L [>"  (x; — v)? — n(X — v)?]. Lettingv = 0, we get a famous
formula for simplified computation of the variano& = -5 (X0, x2 — n¥?).
Judicious use of other values ofwill often do much better; letting it be a round
number that is fairly close to will lead to a calculation of the variance that is easier
for pencil-and-paper computing, and less subject to round-off error in electronic

computing.

Example. You want to know how far it is from your apartment to your college.
You count your paces on five successive days, getting 1007, 998, 1023, 1025, an
1002 paces. You will use the sample mean as a summary measurement. To mak
the calculation easy (see 1.2.2), subtiaet 1000 from each number, and average:
(7—2+23+25+2)/5=11. Thenitis about = 1000+ 11 = 1011 paces to
school. To get the sample variance, use this same valuedhe equation above:

1
s2 = [T+ (-2) + 2F + 25 + 22 — 5 x 117] 4 =1665.

Then the sample standard deviation,is= +/166.5= 12.9. It appears that you
varied aboutt13 paces from day to day as you walked to school.

We can use the mean and standard deviation to provide another kind of simple
summary of a set of measurements. Add and subtinact the standard deviation
from the sample mean to get an interval in which a large majority of the numbers
should fall. In the walking example, the interval is 985¢; < 1037. We call this
a 2 interval. Our definition looks somewhat arbitrary, but we will see some sort
of justification later.

Let us summarize our results:

Proposition (properties of the sample variance).

(i) For any number v, s2 = L [30 (x; — v)2 — n(x — v)?].
(i) s2,, =s?ands,., = s, for any constant a (location invariance).

(iii)y s2. = b%s2 and s, = |b|s, for any constant b (scale equivariance).
You should discover the last two as an exercise. Together they say that the

standard deviation has nothing to do with where your measurements were centere
but is directly proportional to how spread out they are.
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2.4.3 Sandard Scores

These measures of location and scale of our variable samples give us a way to corr
pare “atypicality” of observations that were originally evaluated in quite different
ways:

Example. On the first midterm exam in a statistics class, you make an 82; but on
the second you make only 65. However, the professor grades on the “curve,” by
which she seems to mean that your score will be compared to how your classmate
scored on the same test. You learn that on the first test, the class average was 7
with a standard deviation of 15. On the second test, the average was 51 with &
standard deviation of 12. On which one is your professor likely to conclude that
you did better?

We will, as in the 2s interval, describe each observation as some number of
standard deviations above or below the mean. Lettintgnote that number, we
write x; = x + t;5,; solving forz;, we get the following:

Definition. For a sample of: observations:;, the standar dized measurements
(or standard scores) aret; = ==,

Sx

For example, 1007 paces becomes (160011)/129 = —0.31. In words, 1007

is 0.31 standard deviations below the mean. Notice that thindits are always at

t = £2. A standardized measurement has lost the scale on which it was originally
measured:

Proposition (properties of standard scores).

(i) Under the changes of variable x + a and bx (for b > 0), t does not change.
(i) r=0ands, =1.

You should show these as exercises.

Example (cont.). On that first exam, your standard score was+825)/15=

0.47. On the second test, your standard score was-(6%)/12= 1.17. It turns

out that you did relatively better on the second test, in the sense of being farther
above the class average if the test scores were similarly variable. Your professo
should be quite a bit more impressed with you the second time.

2.5 One-Way Layouts

2.5.1 Analysisof Variance

Remember that a one-way layout experiment splits up a number of observations
x;; among the levels$ of a treatment (see 1.3.1). It may have occurred to you
that we have now established that the standard estimates for the one-way layoL
Xi; = L = %; are actually the least-squares estimates for the parametefs

that model. This is because the SSE is just the sum of squared deviations of eac
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measurement about the center of its cell; and we have discovered that these ar
made smallest for each cell in turn by using the cell means as centers.

What about the centered modg] = 1 + b;? The least-squares estimates only
make theresiduals small, and these are determined by the cell estimajeShe
centered model has exactly these same standard cell predictions (we justwrote thel
in terms of different parameters), so the residugls- x;; are still the same, and
as small as possible. Therefore, the standard estiniates = % Z, 10 Xij

andb; = %; — x are also least- -squares estimates.

The fact that the standard estimates are least-squares will teach us some
thing important. The sum-squared error is S&EZle Z;fle(xij - %)? =
P 127, (xij — Xi)?. But the inner sumy_""(x;; — %;)* is just the SSE
of the Iocatlon model for the; observatlons |n théth level by themselves.
Then the Pythagorean law in (4.2) letting= x, the overall mean, gives us
Yy — X)? = Y0y (nj — X)? — ni(% — )2 Putting this back in the double
sum for the SSE, we get

k

ZZ(X’/ xl) - ZZ(X’J _x)2 Zn (-xl _x)

i= i=1 j=

Moving the negative part over to the other side yieﬁé:l Z;f'zl(x,-j —X)? =
Sy (i — )2 + Yoy ni(% — X)%. Now remembering what these had to
do with the parameters of the centered mogek- x andi + b; = x;, we can
rewrite this last expression:

n;

ZZ(x,, m"‘:ZZ(x,, - b)2+an2

i=1 j= i=1 j=

Proposition. In the centered model for a one-way layout, with least-squares
estimates 1 = x and b; = x; — x, we have

>~

33 s — 07 = zn -7+ zz’m %)
i=1 j=1 i=1 j=
or

k  n;
DO i — )P = Z" b? + Z Z(xl, — i — bi)?.
i=1 j=1 i=1 j=
This is so important that we have a shorthand notation to help us remember it.
The rightmost term was SSE. The term on the left is callecctheected sum of
squares and is denoted by SS. We @flzl n,~l§i2 thesum of squares for treatment
(SST) (or sometimes thieetween-groups sum of squares). It is the total of the
squares of all the adjustments we have made for the level of treatment in the
individual observations. Therefore, our result may be writter=SSST+ SSE.
The expansion can go one step further: Sincesgf.‘zl Z?":l(x,j —x)?isjust
the error sum of squares for a simple location model with only one locatifmn
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all the observations, apply the result from (4.2) witk O to get

k

2D by~ = ZZXU

i=1 j=1 i=1 j=
Plugging this into the proposition yields an impressive result:

Theorem (analysis of variance for the one-way layputIn the centered model
for a one-way layout, with least-squares estimates i = x and b; = x; — x, we
have

k ni

ZZx,j—nx —i—Zn(x,—x)z—i—ZZ(x,j X7,

i= i=1 j=
or

n;

k k k
Z sz; :nlfaz—i-Znil;iz—i-Z (xij —fu— b))

i=1 j=1 i=1 i=1 j=1

We have now decomposed the total sum of squares of the measurements TSS
S Z"’,l x2 into three pieces: The new one:?, is called thesum of squaresfor
themean SSM We then remember the analysis of variance theorem symbolically
as TSS= SSM+ SST+ SSE.

2.5.2 Geometric Interpretation
Looking at this model geometrically, I¢t = 1/i,

T
b=|b--b b by |
N——— ———
n;entries nrentries

and the residual vect@&r= x — fi — b, where the observation vector is

T
X = (_xll...xlnlel...xan...xkl...xknk) .

Each vector is:-dimensional. You should check as an exercise that our theorem

may be writterx"x = /17 i + bTb + &7&. But then we note some important facts:
Proposition.

0] IfLTB 0

(i) p'e=
(i) bTe=

These also should be verified, as an exercise. We say the vectors are orthogon:
to one another.

Perhaps now you can imagine the geometry of the theorem, which is a
three-dimensional version of the ubiquitous theorem of Pythagoras. Imagine a
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FIGURE 2.6. Geometry of ANOVA

rectangular box whose length, width, and height are our three estimated vectors
which you have checked are at right angles to each other (Figure 2.6). Then the
observation vectox is the diagonal of that box. The various sums of squares are
the squared lengths of the edges, which sum to the squared length of the diagona
Once againwe can use our picture (Figure 2.6) to interpret the degrees of freedon
in the one-way layout model. The vectarlies in a one-dimensional subspace,
those vectors proportional g which corresponds to the single degree of freedom
for the mean. The vectdris determined by the different level adjustments, which
may each have any value at all (at least until you make your observations), excep
of course for the centering constraint, which requires them to average zero. This
last statement, by the way, is just what our refib = O tells us: Our adjustments
must be at right angles to the constant vector. Therefoiedetermined by — 1
independent constants and necessarily lieskn-dl-dimensional subspace of our
data space. This matches the degrees of freedom férsh&he residuals vector
may take on any: values at all, except that our resufidé = 0 andb™@ = 0
say that it must be perpendicular to any mean vector and any adjustments vectol
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Therefore, it lies in and — k)-dimensional subspace, because that is how many
independent constants are needed to describe it. Again, these are the degrees
freedom for error. Just as before, when we calculate mean squares correspondin
to these sums of squares, we divide by the degrees of freedom to average over tr
available dimensions.

253 ANOVA Tables

By now you are finding this all to be bewilderingly complicated. So has everyone
else, so thanalysis of variance (ANOVA) tablewas invented to organize all these
statistics:

Source Sum of Squares  Degrees of Freedom Mean Square

Mean nx? 1 nx?

Treatment SST k—1 MST = SST/(k— 1)
Error SSE n—k MSE = SSE/(n— k)
Total TSS n

Elaborations of this table are used for more complicated least-squares models. Th
“total” cells give us a way to check our work—the analysis of variance theorem
saysthat TSSisindeed the column sum. Furthermore, we have just finished arguin
that the degrees of freedom add up to their column total.

Example. From the salinity data for the Bimini Lagoon (see 1.3.1), you should
check that the following values are correct:

Source Sum of Squares  Degreesof Freedom Mean Square

Mean 44654 1 44654

Water Mass 38.80 2 19.40
Error 7.934 27 0.2938
Total 44700.7 30

How shall we interpret the quantities in this table? In this problem (and often
in other ANOVA problems) we find ourselves uninterested in the overall mean
and its table entry. It is so large because the ocean is salty, and that is where th
water comes from. We are interested rather in the differences among samples. W
retreat to the proposition SS SST+ SSE, and the table simplifies to this more
commonly seen form:

Source Sum of Squares Degrees of Freedom Mean Square

Treatment SST k—1 MST = SST/(k— 1)
Error SSE n—k SSE/(n— k)
Total SS n—1

To quantify the relative importance of the treatment level, we may compute the
following statistic:

SST SST

- - o > _
Definition. Thecoefficient of determination is given byR* = s = %55+
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In our salinity example, the corrected sum of squares is 46.73&? so 0.83.
We might interpreR? as the proportion of the sample variance that is “explained”
by systematic differences among the levels. As its name is a mouthful, most statis-
ticians just call it “R-squared.” You might remember from trigonometry tvais
the square of the cosine of the angle between the vebtansix — /i.

254 TheF-Satistic

We might ask instead a somewhat harder question: Are the apparent difference
among treatment means just an accident? That is, did we just by bad luck pick
saltier samples in area Il and fresher samples in area I? Given the variability of our
measurements, that certainly seems possible; but we can never tell with reasonabl
certainty without doing a much more extensive set of measurements.

Since we are using the principle of least squares, we must think that the most
important fact about our random errors is thagth of the error vector. Therefore,
if we rotate that error vector in any direction whatsoever, keeping it the same
length, we should get the same least-squares estimates of our model parameter
This suggests that if least squares is indeed the right way to look at errors in
our experiment, the following assumption about what those errors look like is
plausible:

Assumption of Spherical Distribution. If we repeat the whole experiment many
times, the scatter of sample vectorsibtlimensional space is much the same in
any direction from the vector of “true” values.

This says that the error, or residual, vectors tend to be of similar lengths in any
direction. In one dimension, this means that the scatter of numbers above the true
value looks much the same as the scatter of numbers below the true value, reverse
as if in a mirror. In two dimensions, this pattern is call@ctular symmetry; an
example is shown in Figure 2.7, where each triangle marks the error vector for one
repetition of the experiment. If you rotate this scatter plot through any number of
degrees, it still looks much the same. In three-dimensional space, the scatter plo
would look like what astronomers call a globular star cluster. The mathematical
word for such a pattern gpherical symmetry, hence the name of our assumption.

One implication of this assumption is that tbeder of the observations, the
indicesj = 1,2,... that we gave them, is not scientifically important. This is
because changing the order just involves switching coordinate axes around; tha
obviously has no effect on the general appearance of our spherical cloud of sample
vectors. This is often a desirable property of fair sampling practices. Much later in
the book you will discover that certain very common statistical models will imply
that our assumption is true.

Now assume in our centered model that if we actually knew the deep scientific
truth about what is going o, = 0, so that the treatments should not matter, then
the vector whose squared length is SBTwould consist of irrelevant peculiarities
about our data. Much later in the book we will discover the mathematical reasons
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FIGURE 2.7. Observations with circular symmetry

for an amazing and wonderful fact: If in the one-way layout mdel 0, and the
assumption of spherical distribution is true for this sort of experiment, then MST
and MSE will often be similar in size.

You have no obligation to believe me about this yet, or even understand what it
means. But it tells us why we like to calculate the following:

. .. . . . - MST
Definition. TheF-statisticis given by k1, «+ = ysg-

Our justification suggests that when the true adjustments due to the experimenta
levels should be zero, the F-statistic is somewhere near 1. On the other hand, i
the adjustments for level are substantially different from zero, MST increases, as
you may see by looking at its formula, and so does the F-statistic. In our salinity
example k27 = 66.03; this is so much greater than 1 that we are fairly confident
that the salinity does vary from site to site. If our statistic had been, say 0.7, we
would have to say that the evidence for the treatment mattering was weak, since
some number like this might have arisen by routine accident in an experiment with
no real treatment effect.



2.5 One-Way Layouts 71

We will see other F-statistics with which to evaluate the evidence for experi-
mental treatment effects in other least-squares models. Of course, we have nothin
but experience to guide us in how much bigger than 1.0 an F must be before we
jump to any conclusions about nontrivial effects; this will come later.

255 TheKruskal-\W\allis Satistic

Another simple way to see whether several levels of a treatment show different
measurement values isttank all the measurements from smallest to largest. For
example, in the salinity data, the value 36.71 gets a rank of 1, 36.75 gets a rank o
2, and the two 37.01s are tied for third, so we conventionally give each a rank of
3.5. We continue until 40.80 gets a rank of 30. The complete rankings are

Massl: 103.5155735551182917
MasslIl: 27 3024 23 29 28 25 22
Masslill: 19212012141618 151326

as you should check.

It seems reasonable to perform an analysis of variance on these ranks. The
notation we shall use iB;; for the rank in the whole sample of thiéh observation
in the ith level; for exampleRy;3 = 24. In our example, the level means are
R, = 6.917,R, = 26.0, andR;; = 17.40. This tells us much the same thing
as the level means of the original salinities: Mass Il is a bit saltier than Il and
much saltier than I. (Traditionally, if we are interested in only the question of
whether theith level is peculiar, we compute iWilcoxon rank-sum statistic
W, = Z';":l Rij = n; R;. For exampleW,, = 174. Of course, this is harder to
interpret than the level means.)

The new way of comparing the levels has two important disadvantages: first, it
no longer says anything at all about just how salty the water actually is. Second, it
loses some distinctions that were present in the original observations; for example
the distinction between 19 and 20 was only 0.01%, but the difference between 11
and 12 is fully 0.54%.

On the other hand, the new statistic has an important advantage: If we attack
very little importance to the actual values on the scale of measurement, but only
trust it usually to tell us which sample has a larger value, then these comparisons
based on ranks seem plausibly to capture what we want to know. For example,
our salinity gauge might be poorly calibrated, so that the only thing we are sure of
is that it reads higher with saltier water. Or our scale may have been an arbitrary
one, designed just for this one experiment. The arithmetic test from (1.4.1) was a
collection of problems the teacher invented on the spur of the moment. A grade of
26 means nothing in itself; but the student who scored 26 is likely doing better in
the class than the one who scored 17. Therefore, analyzing this problem by rank:
might well tell us almost as much as using the grades.

The obvious statistic to summarize differences between water masses is the
sum of squares for treatment, which, remember (Section 5.2), compares thes
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level means to the overall meah = 15.5. Then SST= Y *_,(R; — R)% in

our water example, SSE 180218. Notice that some simplification will turn

out to be possible, becauseis just the average of the ranks.1., n; this is
exactly the same, no matter how the experiment came out. In fact, the average o
the first and last ranks is (& n)/2; the average of the second and next to last is
(24 (n—1))/2= (1+n)/2; infact, all such low and matching high pairs average
the same, (& n)/2. Therefore, it is always the case that= (1 + n)/2.

It gets better; our corrected sum of squares SS depends only on all the ranks
so it will be the same however the experiment comes out (if we ignore ties). You
will figure out a formula for SS in the next chapter as an exercise. But this fact has
an important implication: Earlier in this section we had to invent R-squared and F
to compare SST and SSE, because they were independent pieces of informatior
Now SS = SST + SSE, with SS known in advance, says that they are no longer
independent; we need calculate only SST, and interpret it.

Definition. TheKruskal-Wallisstatisticis K = 12/(n(n + 1))SST, where SST
is the sum of squares for treatment when the ranks of the observations are used ¢
the data.

In the water exampleK = 23.25. The larger this is, the more different are
the water masses. In an exercise in a later chapter, you will discover that if there
are in fact no systematic differences among the levels, so there is no pattern tc
which ranks are where, a typical valuekfis somewhere in the neighborhood of
k — 1, the degrees of freedom for treatment. (This is why it is usual to multiply
by 12/(n(n + 1)); the interpretation will no longer depend on our sample size.) In
our example, 3- 1 = 2 is so much smaller than 23.25 that we suspect we have
spotted a real salinity difference.

The Kruskal-Wallis statistic is an important example ofak statistic, which
are of considerable historical interest in applied statistics. You will see another
example in a later chapter.

2.6 Least-Squares Estimation for Regression Models

2.6.1 Estimatesfor Smple Linear Regression

Finally, we come to an important estimation problem from the last chapter that the
method of least squares can solve for us. Remember the simple linear regressio
modely; = u+(x; —x)b? (See 1.5.2.) We were able to suggest standard estimates
of the parameterg andb in only the simplest case, where exactly two distinct
values of the independent variabl@ppeared in the data, so we could interpolate
between them. The method of least squares would suggest that we choose ot
parameters to makg "_;[y; — u — (x; — X)b]? as small as possible. This looks
harder than the problem we solved in Section 3; but fortunately, we have already
done most of the work.
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First, pretend we already knew the correct valué.oThen the least-squares
problem just asks what constant valuemakes) 7, {[y; — (x; — X)b] — u}?
smallest. That is, what singjeis closest to the known numberns [ (x; — x)b]?

We already solved this problem in Section 4: The least-squares estimate is jus
their average

D VR ) SR 3 )
i=1 i=1 i=1

The last term is zero, from a property of the sample meai, soy. This works
out so nicely because we used a centered model.

We get the same result for anyto get the besk, we are left with the problem
of minimizing Y7 [vi — y — (xi — x)b]2. That is, we want a least-squares pre-
diction of the values; — y from the model {; — x)b. This is the simple proportion
model from Section 3; sbé = Y = P — X)X — X)% This is
important enough to make into a theorem.

Theorem (linear regression by least squgresGiven a vector of independent
variable settings x and a vector of dependent measurements y, then the least
sguares estimates of the prediction model 3; = u + (x; — X)b aregivenby it = y
and

b= (=N =5/ Y (i — %)
i=1 i=1

whenever not all values of x are the same.

(Why did | have to put in that last quibble?) You should check as an exercise that
the estimates in the theorem are the same as our standard estimates from the Iz
chapter, in case there are only two different values of the independent variable.

Example. Mapes and Dajda in 1976 collected data on the percentage of the time
that ill British children of various ages were taken to the doctor:

age 0 1 2 31 4 5 6 7
percentage | 70 | 76 | 51 | 62 | 67 | 48 | 50 | 51

age 8| 9|10 11| 12| 13| 14
percentage | 65| 70 | 60 | 40 | 55 | 45 | 38

Itis plausible that a very crude prediction of a child’s likelihood of being taken
to the doctor might be made by a linear regression modeb: $tands for the
percentage of time an age group has gone to the doctoy &mdtheir age, then
we predictp = u + (a — a)b. Actually, since the raw data were individual cases
of a child either going or not going, | should be uslogistic regression here (see
1.8.2); but | have no access to the raw data. We shall do the best we can with &
least-squares estimate of a linear regression model. We caléaulatey years,
= p = 56.53%,> " (a; —a)® = 280, and)_;_,(a; — a)(p: — p) = —440.
Thenbh = —440/280 = —1.5714. (You should check my arithmetic.) We arrive
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FIGURE 2.8. Doctor visits as a function of age

at a prediction equation
p =56.53—1.5714¢ — 7).

This line is displayed on the scatter plot in Figure 2.8. For example, we predict
that a child of 9.5 years of age will be taken to the doctor about 52.6% of the time.
From looking at the graph, this is a very crude estimate; on the other hand, I think
| would trust it better than just the data values for 9 and 10 years.

2.6.2 ANOVA for Regression

We partition the sum of squares as in Section 3 to get

Z(yl - y)2 Z [yt - y b(xl —)C)] +b2 Z(xl _x)Z

and then decompose the left-hand side as in Section 4:

Theorem (analysis of variance for simple linear regres3ionFor the least-
squares estimates for simple linear regression,

iyiz = nﬁz—l—lszi(xi _;)2+Ii [yi — 5 —b(x; —f)]z'
i=1 i—1 i-1

As an exercise, you should interpret this as a statement about vectors at righ
angles to each other. The new term we call the sum of squares for regression
SSR=h? " L (x; — X)% it has one degree of freedom. So now we can write down
an analysis of variance table:
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Source Sum of Squares  Degrees of Freedom Mean Square

Mean ny? 1 ny?

Regression SSR 1 MSR = SSR
Error SSE n—2 MSE = SSE/(n— 2)
Total TSS n

Example (cont.). In the problem of rates of going to the doctor, we have the
following:

Source Sum of Squares Degreesof Freedom Mean Square

Mean 47940.0 1 47940.0

Age 691.429 1 691.429
Error 1202.305 13 92.485
Total 49834 15

That gives usk? = 691.43/(691.43+ 12023) = 0.3651. Only about 37% of
the variability in our rates of going to the doctor is explained by the linear trend

we have proposed. On the other hafgy; = % = 7.4761 is much bigger

than one, so that even though our predictions do not accomplish a great deal, th
downward trend may be real.

2.7 Correlation

2.7.1 Sandardizing the Regression Line

To see some qualitative features of the least-squares regression equation, divid
both the numerator and denominator of the slope estimate-by,

LS = W) — X)
o1 iz (x — %)

so that the denominator is just the sample variance bét us give the numerator
aname:

b=

)

Definition. Thesample covariance of sample measurement vectarandy is
1 _ _
s = T 20 D = 9

Then we can write compactly= s¢y/s2. Now our regression equation, with= y
moved back to the other side of the equation, looks fike j = (x — X)sy,/s2.
These subtractions may remind you sténdard scores; we can force them to
appear by dividing both sides by and rearranging to get

(5) - }_))/sy = (()C - x)/sx)(sxy/(sxsy))

Let us play a standard mathematician’s game by giving the messy part a name:
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Definition. Thesample correlation betweerx andy is
Sxy _ Z?:l(yi - )_7)()(,' - )E)
S8 Y= P Y — 02

We have canceled out the { 1)’s. For example, in the age/doctor—visit problem,
r = —0.604.

xy —

Giving obvious namesto the parts that are standard scores, we have aremarkabl
compact formulation of simple least-squares regression:

Proposition. f; = ryyt,.

2.7.2 Properties of the Sample Correlation

This last equation is not terribly useful for doing predictions, and it will help our
understanding only if we develop some insight into what the correlation means.
It will turn out to be a dimensionless measure of the degree to which the two
variables change together. First, let us apply the Schwarz inequality (see Sectior
3.5) tox; — x andy; — y to get that

n 2 n n
[Z(yi - i — ;)} <Y =) i —%)?
i=1 i=1 i=1

always holds, where all the quantities are familiar from earlier in this section.
Dividing by the right-hand side, we find

[l =D -0
ORI VMCET

This is just the square of the correlation, so alwa,ig,sg 1, which gives us the
first part of the following:

Proposition (properties of the correlation).

() =1<ry <1

(II) Fry = Fyx.
(iii)) 7y4a,y = 1y, for any constant a.
(V) rex,y = ryy for any constant ¢ > 0.
(V) 7ex,y = —ryy for ¢ < 0.

Notice that (ii) is true becauseandy may be switched in the defining formula.
You should prove (iii)—(v) as exercises.

Parts (iv) and (v) are what we mean by calling a quardityensionless: Think
of ¢ as the conversion factor that you need to change one of the variables from fee
into meters, for example. In the procestoes not change.

Now go back to the statement of the Schwarz inequality: It becomes an equality
just when the vector of quantitigs — y is exactly proportional to the vector of
guantitiesy; — x. That is, there is some constdnsuch thaty, — y = b(x; — ).
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But theny; = y + b(x; — x), and the regression prediction is exactly true. The
points in the scatter plot are lined up perfectly along this straight line, and SSE =
0. Inthis case, because the inequality has become an equality, neceﬁ;afily;
SOryy, = 1 (if b > 0) orr,, = —1(if b < 0).

Now summarize what we can conclude from knowing the correlation:

=

If r,, = 1, then all pairsX, y) fall on an upward-sloping line.

2. If ryy > 1, there is an upward-sloping regression line; the larger it is, the
more tightly the pairs cluster about the line (we call thjgositive association
betweerx andy).

3. If ryy, = 0, aregression line is flat, and it does not help you predict one variable
from the other (we say andy areuncorrelated).

4. If ryy, < 0, there is a downward-sloping regression line; the more negative it
is, the more tightly the pairs cluster about the lineahdy have anegative
association).

5. If ry, = —1, then all pairsX, y) fall on a downward-sloping line.

You might notice that because of our properties of the correlation, it simply does
not matter in Figure 2.9 where the origin is, or what units our axes are in, or which
axis isx and which isy.

For the example where = —0.604, there is a moderate degree of negative
association. You might notice that in this exampfe= R?. You should show as
an exercise that this is always true for simple linear regression. Of caunsay
be either positive or negative, and so tell us also the direction of the association.
On the other han@&? makes sense for any model estimated by least squares.

A
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= A A £
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FIGURE 2.9. Examples of correlation
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2.7.3 Regression to the Mean

The regression equatiop = r,,t, tells us something interesting right away. Since

r is always no bigger in size than one, it follows thaf < |#,|: The standard score

of the prediction is no bigger in size than the independent-variable standard score
We always predict that our experimental result will be closer to average than our
experimental setting. This is calleegression to the mean; it was so named by the
pioneering mathematical biologist Francis Galton in the late nineteenth century,
and is the origin of the statistical use of the word regression. His example was that
the sons of tall fathers tend to be taller than average, but less so than their fathers
the reverse is true for sons of short fathers. This correlation is about 0.5; so on
average, children regress halfway to the mean height of their generation, by our
equation.

2.8 More Complicated Models*

2.8.1 ANOVA for Two-Way Layouts

The method of least squares should tell us how to estimate the parameters of mode
for more elaborate experiments. For example, what about two-way layouts? In the
full model %;;x = w;;, we know what to do; as before, we get a least-squares
estimate for each cell separatefy;; = x;;. This is the standard estimate. But
now consider the centered parametrizatign = n + b; + ¢; + d;;. What are the
least-squares estimates for the parameters, and do we have an analysis of varian
to rate theirimportance? In Chapter 1, we claimed that the standard estimates wer
appropriate only fobalanced designs, when the numbers of observations of the
cells of each row were proportional to each other (see 1.4.3). Now we shall see
why we need that condition.

The standard estimates wefie= %, by = %, — %, ¢; = ., andd;; =
Xij — Xie — Xej + X. We will proceed, as we did earlier, to decompose the sum of
squares in stages. First, we work as if the entire collection of observations were
a one-way layout split by levels of the column treatmg¢niThen we have the
analysis of variance

m  Nij m  Nij

Zzzx’Jk = nx +Zn‘7('x°J —X) +ZZZ(Xuk xo))

i=1 j=1k= i=1 j=1k=

For the next stage, we will predlct all the residuslg — x,; with another one-
way layout model, using the levels of thew treatment. Notice that the grand
mean of these quantities is zero, because they are residuals in a centered mode
Now we need to figure out their mean for thle row: -~ Z, I (i —Xej) =
Xie — ijl(nlj/n,.)x.] This would lead to a compllcated decomposition of the
sum of squares, and worse, one that would turn out different if we had looked at
rows first. But that ratio of numbers of observations in the last tefyin;, does
not depend on, because we are talking about balanced designs. Substituting its
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constant value.j/n, we get

m  nij

Nej _ _
Z E (‘xl_]k xoj)—xu_ E Xeoj = Xje — X
Nie n

j=1k j=1

(as an easy exercise, check my claim t@ﬁzl(n.j/n)i.j = Xx). This, then, is
the predicted value of these residualg — x.; by row. The sum of squares of
residuals can then be expanded, again by the analysis of variance theorem:

m  Nij nijj

] m

ZZZ(-xUk )C.]) - Znu(-xu x)2 ZZZ(-xUk xzo +X)
i=1 j=1k= i=1 j=1k

The last stage in the decomposition will see us predicting the current residuals
Xijk —Xej — Xio +X With afull model. The average residual over all the observations
in theijth cell is obviouslyx;; — x,; — X;. + %, because only the first term changes
inside that cell. This is, of course, the standard estimate of interaction. We get a
third decomposition of sum of squares

] m
ZZ (‘xljk xu"‘x)z Zznlj(xl] X _-fio +)E)2
Jj=

i=1 j=

Combining the three stages, we get a result that is impressive-looking, but eas)
to interpret:

Theorem (analysis of variance for a balanced two-way layoutf the designis
balanced, then

m  Nj

!
Z Z le]k - nx + Zl’l.](x.] - )C) + ano(-xu - x)2

i=1 j=
I m [ m_ nij
+Z nlj(-xlj _'x0] -xu +-x)2 ZZ (xijk _)Eij)z-
i=1 j=1 i=1 j=1k=1
We see the familiar TSS term, the SSM term, and the final SSE term. Since
we now have two treatment sums of squares, we will name them sum of squares
for columns, SSC " n.;(x.; — x)?; and sum of squares for rows, SSR =
Zﬁzl nie(%ie — %)%. (We will not be confused by the latter, because it is not a
regression problem.) Finally, we need the sum of squares for interaction,

1 m
Z Znij(fij — Xuj — Fie + )%

i=1 j=1

Our complicated theorem just says TSS = SSM + SSC + SSR + SSI + SSE. Notice
that nothing in our result depends on the fact that we decomposed by columns, an
then rows. We are ready to put the terms into an ANOVA table:
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Source Sum of Squares Degreesof Freedom Mean Square

Mean SSM 1 MSM
Rows SSR -1 MSR
Columns SSC m—1 MSC
Interaction SSi (—Dm-12) MSI
Error SSE n—Im MSE
Total TSS n

Once again, because most applications are not concerned with the overall mear
we commonly reduce it to a decomposition of the corrected sum of squares SS
SSC+ SSR+ SSI4 SSE:

Source Sum of Squares Degreesof Freedom Mean Square

Rows SSR -1 MSR
Columns SSC m—1 MSC
Interaction SSi (—1)m—-1) MSI
Error SSE n—Im MSE
Total SS n—1

Example. Returning to the third-grade arithmetic test (see 1.4.1), we compute the
ANOVA table for the full model:

Source Sum of Squares Degreesof Freedom Mean Square

Curriculum 156.8 1 156.8
Gender 16.2 1 16.2
Interaction 1.8 1 1.8
Error 774.8 16 48.425
Total 949.6 19

We find ourselves interested in several different F-statistics here. Comparing the
mean square for interaction to that for error, we get a ratio of 0.037. This is much
lessthan 1 (in fact, surprisingly so; you will rarely encounter such a small value
in practice). This suggests that there is no evidence that the change of curriculurr
treats boys and girls differently.

Now we know that it is at least plausible to imagine that we had two separate
experiments: one that looked at differences in the scores for different curricula
and the other that looked at the scores of girls versus boys. Comparing the gende
mean square to error, we get an F-statistic of 0.335; still less than 1. We have nc
evidence that boys really tended to do better. Comparing the curriculum to error,
we get a ratio of 3.24. Experience will teach you that this is not amazingly larger
than 1; still, it is some evidence that the students using the new curriculum are
really doing better.

2.8.2 Additive Models

What about additive models likg;, = n+ b; +¢; (thatis, which neglect interac-
tions) for balanced two-way layouts? Going back to the ANOVA for full models,
simply combine the first two stages, skipping the decomposition involving the
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interaction:
l m  Nij m !
Z Xk :n}?z—i—Zn.j(i.j —)E)Z—f—znio(iio _2)2
i=1 j=1 k=1 j=1 =1
] m_ Mij
+ Z Z Z(x,-jk - )E.j — Xie +)E)2'
i=1 j=1k=1

This tells us that the decomposition of the observations
Xijk = X + (Xoj — %) + (Xie — %) + (Xijx — Xoj — Xio + X)

is, by the Pythagorean theorem, orthogonal. That is, thesfalimensional vectors
consisting of each of the four terms on the right-hand side are at right angles to
one another. Remember that the additive model has standard estjinates,

b; = %, — X, ¢; = X.; — %. Therefore, our prediction is the sum of the first
three vectors, and it is at right angles to the fourth, residual, vector. Apparently,
the standard estimate consists qdeapendicular projection into the subspace of
additive predictions; therefore, the residual vector is as short as it could be. This
means that our estimate is least squares.

Proposition. The standard estimates of the centered, additive model for a
balanced two-way layout are least squares.

The ANOVA table looks just like the one for the full model, except that the
interaction and error rows have been summed into a single, error, row.

Example. We concluded earlier that the additive model worked quite adequately
in the arithmetic curriculum problem. Its ANOVA table for its corrected sum of
squares is as follows:

Source Sum of Squares Degreesof Freedom Mean Square

Curriculum 156.8 1 156.8
Gender 16.2 1 16.2
Error 776.6 17 45.68
Total 949.6 19

The method of least squares will still find the parameters for a centered, additive
model from an unbalanced experiment, but the answer is more complicated anc
raises some questions better left for advanced courses. Furthermore, least-squar
estimation may be applied to estimating multiple-regression models. You will do
some important cases as exercises.

Unfortunately, the method of least-squares is not really appropriate for estimat-
ing loglinear contingency table models and logistic regression models, which must
wait for a later chapter.
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2.9 Summary

We first suggested that the ordinary idea of geometrical distance, applied to sample
vectors and their model predictions, gives us a way to tell a good model from
less good ones (2.1). Therefore, the failure of a mgdéd fit the data may be
measured by SSE > _; (x; — wi)? (2.2). When we choose our model by making
this quantity as small as possible, we are applyingpttiaciple of least squares.

We then used this principle to find the best estimate @&mple proportionality
regression modet = xb and concluded that we must solvenarmal equation

S xiyi = by’ x? for b (3.2). This had an intriguing consequence: The
standard estimates, based on sample means, for the measurement models fro
Chapter 1 are really least-squares estimates (4.1). The natural measure of how we
these means described a sample wasahgle variance s? = n—il Y —%)?

(4.2). This led to a method for evaluating how well more general models are doing,
called theAnalysis of Variance (ANOVA), based on generalizations of the theorem

of Pythagoras. For example, in a one-way layout we get

k n; k k n;
Z Zx,zj =np®+ Znibiz + Z Z(xij — 0= b)),
i=1 j=1 i=1 i=1 j=1
so that the second term on the right measures how important the levels of the
treatment were, and the last term is the SSE again (5.2). This allowed us to interpre
degrees of freedom geometrically, as the dimension of a subspace. We then applie
least squares to simple linear regression moglets i + b(x; — x); the estimates
aref = y and

Yo i = ¥)xi —X)
Z?:l(xi —x)? .

To interpret these, we introduced the idea of ttwrelation between two
measurements,

b= (6.1).

- Yo i = ¥)xi —X)
xy — .
IO = 32 (02

Finally, we showed that several more sophisticated measurement models, involving
cross-classification, may also be estimated by least squares (8.2).

(7.1).

2.10 Exercises

1. The Fahrenheit boiling point of water is 212 degrees at sea level. You measure
the boiling point of water from six cheap thermometers, all from the same
manufacturer, getting 214.4, 211.8, 210.6, 212.4, 212.0, and 210.8. What are
the SSE and Euclidean distance of this sample from the correct value? What
are the MSE and RMSE?
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2. Draper and Smith in 1981 reported a study of the relationship between con-
centration of aflatoxin (parts per billion) and percentage of contaminated nuts
in batches of peanuts:

a &

toxin % bad toxin % bad toxin % bad
3.0 0.029 | 18.8 0.058 | 46.8 0.189
4.7 0.021 | 18.9 0.068 | 58.1 0.123
8.3 0.018 | 21.7 0.092 | 62.3 0.202
9.3 0.029 | 21.9 0.030 | 70.6 0.145
9.9 0.043 | 22.8 0.015| 71.1 0.212
11.0 0.039 | 24.2 0.067 | 71.3 0.179
12.3 0.044 | 25.8 0.142 | 83.2 0.170
12.5 0.028 | 30.6 0.013 | 83.6 0.282
12.6 0.111 | 36.2 0.042 | 99.5 0.358
15.9 0.039 | 39.8 0.091 | 111.2 0.342
16.7 0.018 | 44.3 0.141
18.8 0.025 | 46.8 0.137

Draw a scatter plot relating percentage of contaminated peanuts to
concentration of aflatoxin.

Since measuring the concentration of aflatoxin is much easier than

counting contaminated peanuts, we would like to predict the percent-

age contaminated, using the aflatoxin concentration, perhaps by simply
multiplying the concentration by some constant. Specify and estimate the
parameter of such a model, by the method of least squares, and graph the
line on your scatter plot.

You measure a 50.0 parts per billion aflatoxin in a new batch of peanuts.

What prediction does your model provide for the percentage of contam-

inated peanuts in that batch? To get some idea of the accuracy of your
prediction, estimate the root-mean-squared error for predictions in general.

. Compute both sides of the Schwarz inequality for the toxin and percentage

of bad peanut vectors in Exercise 2 and note how close it is to an equality.
Prove properties (ii) and (iii) of the sample mean

For the 7 measured ratios of the mass of the earth and moon from Exercise 1
of Chapter 1:

a.

b.

Calculate the sample variance and sample standard deviation using the
defining formulas? = -1 3" (x; — X)2.

Now redo your calculation of the sample variance using the computational
formulas? = -2 3" (x; — v)? — -2 (& — v)?, first using the traditional
valuev = 0, then using an intelligent choice = 81.3. Be sure to

use exactly six significant figuresfor every step in your calculations.
Compare your answers to each other and to (a).

Inrecent years, many alternative methods of estimating the center of a sample
of measurements have been proposed. For a newly discovered subatomic pal
ticle, 15 measurements of its mass have been carried out. Being old fashioned
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10.

11.

12.

13.

14.

15.
16.

17.

2. Least Squares Methods

you find the sample mean, 124 Mev, and its sum-squared error=SEiZ 0.
Three new methods have been proposed: From the same data, Larry come
up with a center estimate for which he claims SSEL625; Moe suggests

one for which he claims SSE 1528; and Curly proposes one for which he
claims SSE= 1591.

a. At least one of the three has made an arithmetic error. Which one, and
why?

b. Assuming that the other two made no mistakes, what are the possible
values of the estimates they might have made of the particle’s mass?

. Prove properties (i) and (iii) of the sample varian¢and the sample standard

deviations,.

. Prove the properties of standardized measurements.
. Show that for the one-way layout model, the vector form of the analysis of

variance for the one-way layout indeed says exactly the same thing as the
theorem. Then prove the proposition about the mutual orthogonality of the
three vectorgi, b, andé.

Construct the analysis of variance table for the one-way-layout model for the
DBH level data from Exercise 2 from Chapter 1. Calculate the F-statistic for
treatment. Does it suggest that clinical state made a real difference in patient
DBH level?

Construct the analysis of variance table for the one-way-layout model for the
shrimp-net data from Exercise 3 of Chapter 1. Calculate the F-statistic for
brand of net. What do you conclude about the importance of which net you
use?

Calculate the Kruskal-Wallis statisticfor the shrimp-net data from Exercise

3 of Chapter 1. What do you conclude about the importance of which brand
of net to use?

Prove that our least-squares estimates for a simple linear regression mode
are exactly the same as the standard estimates, in case (as in 1.5.1) there a
exactly two different values of the independent variable.

In the data of Exercise 2 estimate a two-parameter simple linear regression
modelp = u+ (¢t — )b, wherep is the percentage of bad peanuts aigthe

parts per billion of aflatoxin. Predict once again the percentage of bad peanuts
you would expect to find in a batch with 50.0 parts per billion aflatoxin.

a. Construct the ANOVA table for this regression problem. Compute the
RMSE for predictions under this model. Compare it to the RMSE for the
simpler model of Exercise 2. What do you conclude?

b. Calculate the correlation between percentage of contaminated nuts and
concentration of aflatoxin.

Prove parts (iii)—(v) of the properties of sample correlations.

Show that for least-squares estimates of simple linear regression we always

haver? = R?

a. Forthe experimental data of Exercise 6 in Chapter 1, constructthe ANOVA
table for the additive model. Now do the same for the full model.
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b. Compute F-statistics for the presence of interaction, a diet effect, and an
exercise effect. What do you conclude?

2.11 Supplementary Exercises

18.

19.

20.

You extract a sample of 25 resistors from a batch that are supposed to be 10(
ohms. Here are their actual resistances:

83 85 109 100 89
82 97 83 107 87
105 107 94 96 85
96 97 100 83 96
92 91 89 97 84

a. Find the sample mean and sample standard deviation for these numbers.
b. Construct a 2-sinterval for this sample. Find the standard score for a
resistance of 83 ohms.

One alternative to using the principle of least squares to estimate linear models
is theprinciple of least total error, which just says to choose parameter
values that make the sum of the absolute values of the residuals as small a
possible. We will do this for the simple location model, which finds a center
w for a collection ofr measurements by minimizing TE= Y_"_, |x; — ul.

We will proceed in stages, for the special case thistodd. First, sort your
observations in ascending order, and write the resylts< x(o) < - - - < x¢y.

Now write the total error as the sum of the first and last term, then the second
and next-to-last, and so forth, until only the middle term is unpaired:

(n—1)/2
TE= Y (Ix¢) — il + X1y — 1l) + [Xpnray2 — .
i=1
a. Prove theriangle inequality |a — b| + |c — b| > |c — a| for any three
numbersz, b, ¢, noting that it is an equality exactly whéris betweeru
andc.
b. Use (a) to conclude that TE Zf’;‘ll)/z(x(nﬂ,,-) — X)) + 1 X[nt1)/2) — 1.
For what value ofu is this an equality, which also makes TE as small as
possible? This is our least total error location estimatdnave you seen
it before?
c. Computeir and TE for the mass ratios of Exercise 5. (Notice that you
found a formula for TE in (b) that does not directly mention the vgljie

As yet another way of measuring the error in a collection nfeasurements

x;, perhaps we should just average the squared differences between then
(x; — xj)z. Using the algebraic fact that there afa — 1)/2 pairs of different
observations, this would b€ = 25 37, (xi — x;)*.

a. Computed? using this formula for the water temperatures of Exercise 1.
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21.

22.

23.

24,

25.

26.

27.
28.

2. Least Squares Methods

b. Showthatalwayg? = -2 3" (x; —x)? = 252 so we have nothing very
new here. (However, this provides our first insight into why we usually
divide byn — 1 in computing variances. It comes from the formula for
counting pairs, to which we will return.)

In Exercise 20 from Chapter 1, the telephone bill problem, construct an
ANOVA table. Now compute the F-statistic for the effect of choice of carrier.
What do you conclude?

In Exercise 23 from Chapter 1, the pizza problem:

a. Construct an ANOVA table for the additive model. Calculate an F-statistic
for the importance of location. What do you conclude?
b. Is it possible to carry out (a) for the full model? Why or why not?

Show that for the situation of Exercise 27, Chapter 1 (three equally spaced
values of the independent variable, equal numbers of observations at the
smallest and largest value), the standard estimate you proposed for the simple
linear regression model was in fact the least-squares estimate.

The pressure and volume of a fixed mass of an ideal gas follow the law
PVY = C under adiabatic (insulated) compression, wh€rand y are
constants. We get the following results for a quantity of real gas:

P (Ib/sg.in)  V (cu.in.)

212 10
111 15
64 20
46 25
36 30
25 35

a. Estimate the constant andy by simple linear regression by predicting
pressure from the volume to which you have compressed youHgas.
our law is not linear, so you will have to take logarithms of both sides first
to make it so.

b. Thoughwe do notlike to extrapolate, our apparatus will notlet us compress
the gas to 5 cubic inches. Use the results in (a) to estimate the pressure ir
that case.

Using the theorem of the analysis of variance for simple linear regression,
define the three mutually orthogonal vectors that sum,tand prove that
they are indeed orthogonal.

Find the parameter estimate for the simple proportions regression fodel

bx; using the principle of least total error (Exercise 19).

Use the method of Exercise 26 to estimate the Hubble parameter

Given an observation vectarand a model vecto.:

a. Find an inequality connecting the SSE and the total error TE defined in
Exercise 19Hint: Apply the Schwarz inequality to the vectbfall ones)
and the vector whose coordinates pre— u;|.
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b. Translate it into a more useful relationship between the RMSE and the
mean absolute error MAE TE/n.

To estimate a multiple regression modiek 1 + (x1 — x1)b1 + (x2 — X2)b2,

we might naively hope that the estimates wouldjbe= y, b, = sxly/sfl,

by = sty/sfz. This is usually false, but for one important sort of experiment it
works. We say that the designdsthogonal if s,,,, = 0. Show, by reasoning

in stages, that in this case the naive estimates are the least-squares estimate
We measure the efficiency of a polymerization reaction for various vessel
temperatures and pressures:

efficiency (%) temperature(F) pressure(lb/sqin.)

74 250 100
81 300 100
85 350 100
76 250 120
85 300 120
88 350 120
76 250 140
82 300 140
91 350 140

a. Using the method of Exercise 29, show that this design is orthogonal, and
find a linear prediction equation for efficiency in terms of temperature and
pressure.

b. Plot your model, using the method of Chapter 1, Section 6. How well does
the linear equation seem to describe your data?

c. At 320 degrees and 115 pounds per square inch, what would you expect
the percent efficiency of this reaction to be? Find the RMSE , to get some
idea how good your prediction is likely to be.

a. Since we already know that the least-squares estimate for centered simple
linear regression ig = y, estimateb instead by calculus: That is, mini-
mize Y7 [y; —  — b(x; — X)]? as a function ob by differentiating to
find an extremum and differentiating again to see whether you have found
a minimum.

b. Do the same thing to estimate the slop&’s)(in the multiple regression
modely = u + (x1 — x1)b1 + (x2 — x2)b2, Where stilli = y. Do not
assume that the design is orthogonal. Tpdeial derivatives of the sums
of squares for eadhin turn to get asystem of normal equations, two linear
equations in two unknowns. (You need not take second derivatives here.)

Use calculus as in Exercise 31 to find the normal equations for estimating

the modely = u + b(x — x) + c(x — X)? in a regression problem with one

independent variable. (This is callpdlynomial regression. You can imagine
how to generalize it to polynomials of higher degree.) Solve them for the
aflatoxin data of Exercise 2. Repeat the prediction and error estimate of part

(c), and compare.
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CHAPTER 3

Combinatorial Probability

3.1 Introduction

We have seen useful ways of summarizing complicated data sets in the last twc
chapters. We have taken that process about as far as we can without developin
ways of deciding whether our models are reasonable and how accurate our pararr
eter estimates are, a process caftatistical inference. The great breakthrough on

this problem came about when people realized that we needed mathematical moc
els for the origin of ouwariability, as well as for the important natural processes
they were studying. The statistician’s favorite mathematical tool for doing this is
probability. An example will introduce one application of probability to statistical
inference:

Example. The great statistician R. A. Fisher described a party he attended in
which the hostess was serving tea with milk (this was England). She claimed that
she could tell whether her maid had poured tea or milk into the cup first, just by
tasting. Fisher was skeptical. He proposed an experiment to test her claim: He
would put the tea first in some cups, and the milk first in the others, stir up the
contents, scramble the cups, then let her taste them all and announce which one
had tea poured first. The more she got right, the more impressed he would be witt
her claim. This is a statistical experiment because werg@déecation; we pour a
number of cups. After all, few of us would be impressed if she guessed correctly
what had happened with a single cup.

How do we interpret the results? Fisher’s approach, callessical or frequen-
tist inference, starts before the experiment. We specify all possible outcomes. Fot
example, with six cups we might write the numbers 1, 2, 3 on the bottom of those
cups that are to get tea first and 4, 5, 6 on those that will get milk first. Then we
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pour the beverages: Let the lady taste and tell us which three she believes got te
first. Here are her possible choices of the cups that perhaps got tea first:

123 | threecorrect | 145

124 146

125 156

126 245 | onecorrect
134 | two correct 246

135 256

136 345

234 346

235 356

236 456 | nonecorrect

Fisher suspected that she was just guessing; so just by accident any of thes
possibilities might have arisen. If she gets all three cups right, that would happen
only one time in twenty; because we have listed twenty different things she could
have said. The statistician would conclude that either she had been fairly lucky, or
there is some substance to her claim. On the other hand, if she gets two cups ot
of three, she might say that this supported her claim. But Fisher would point out
that fully ten of our twenty cases, or half the time, she would get at least some two
of the three cups right by luck. No doubt he would remain a skeptic.

In the next several chapters, this kind of reasoning will help us evaluate some
of our models for counted data. Eventually, it will do the same for measurement
models.

Time to Review

Set notation
Integration

3.2 Probability with Equally Likely Outcomes

3.2.1 What Is Probability?

In the example above, we invented a measure of how rare or surprising various
possible results of our experiment are, in light of an opinion about what is really
going on. Intuitively, theprobability will be the proportion of times we expect the
results to come out in some particular way, when the experiment has yet to be done
The calculation in this case was particularly simple but widely useful. When we
believe that a number of possible outcomeseagrally likely, then the probability
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of some event is
number of outcomes leading to event

robability of event= .
P Y number of outcomes possible

Therefore, the lady’s probability of two of three cups or better wg2@Q0or 0.5.
Let us turn this into some formal notation:

Definition. An event is a set whose elements are distiogtcomes.

Intuitively, an event is a collection of interest to us of the individual things that
we believe might happen in some experiment not yet performed.

At this point, you should review the basic concepts and the notation of mathe-
matical set theory. Events are often represented by capital letters (A,)BThe
number of outcomes in a finite event will be denoted Ay, We will talk about
the probability that an event A will happen when the set of outcomes we believe
possible is B, calling ithe probability of A relative to B (or given B, or condi-
tioned on B); we denote it by P(A B). Remembering that A B, the intersection
of A and B, is the set of outcomes in B that are also in the event A, our ratio above
suggests the following:

Definition. A probability space with equally likely outcomes, has

|ANB|
IBJ
where A and B are events, and B is not empty and has a finite number of outcomes

P(A|B) =

’

Ifitis obvious what the set of possibilities B should be in a particular problem, we
will often use the shorthand P(A) for P(M), called arunconditional probability.
Notice that in a wayequally likely is being defined here; it is any circumstance in
which the probability of an event may be determined by the simple proportion of
outcomes from that event.

3.2.2 Probabilities by Counting

Probabilists (mathematicians who study probability) traditionallyurss, which

are just opaque jars containing a number of marbles of the same size, weight
and surface texture, to construct probability models. Our favorite urn, which will
appear through much of the rest of the course, will contain some nuwibafr
white marbles and some numberof black marbles (Figure 3.1).

Our experiment is performed by stirring up the marbles so well that we have no
idea which marbles are where. Then someone reaches in without looking and
removes a marble. Is it black or white? This procedure matches our intuitive notion
that all the marbles are equally likely to be chosen. The probability that the marble
will be white is then

|white marble and from jar| W
|from jar| ~ W+B’

P(white marblg from jar) =
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FIGURE 3.1. Anurn

Even though we will use urns mainly as simple models for probabilistic experi-
ments, they have practical applications. For example, what if we had decided to
test a new medical procedure on a certain number of patients? It is considerec
good policy also to use the standard medical regimen on a similar set of patients.
calledcontrols. A simple way to help ensure that the controls are a group of pa-
tients similar to the ones who get treateahdomization, might work as follows:
If we decide to test the procedure @inpatients and hav8 controls, simply put
those numbers of white and black marbles in the urn and stir it up. Now as each
qualified patient appears at the hospital, we draw out a marble. If it is white, the
patient gets the new treatment, if black, the old treatment. By the time the urn
is empty, we have our full complement of subjects. The very unpredictability of
patient assignments is the great virtue of this method: It makes it very difficult for
experimenters, consciously or unconsciously, to bias the choice of patients eithel
for or against the new procedure.

One nice feature of the basic urn experiment is that it can be arranged so tha
the probability of a white marble is any fractionafional number) between 0
and 1. However, as we shall see, there is a famous geometrical experiment (th
Buffon needle problem) in which the probability of an event g 2(This number
is known to be irrational; so it is not a fraction, and the decimal representation
begins 0.63661977....) We cannot construct an urn to give this exact probability.
However, we can construct a sequence of urn models that gives probabilities a:
close as we please t¢g2: 6 white marbles and 4 black marbles gives probability
0.6 for drawing a white marble; 64 and 36 gives probability 0.64; 637 and 363
gives probability 0.637; 6366 and 3634 gives probability 0.6366; and so forth. For
reasons we shall discover, it would take several million sets of draws from the
urn before we were likely to notice that even the third of our sequence of models
had the wrong probability. This process, constructing a sequence of models whost
probabilities approach that of another experiment, will be one of our mostimportant
mathematical tools. (It will be callecbnvergence in distribution.)

So calculating probabilities is trivial so far, because all we have to do is count.
But thatis not as easy as it sounds. In Fisher’s actual tea-tasting experiments, ther
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were four cups with tea first and four with milk first. To proceed with our analysis
we would have to list all sets of four out of eight cups his hostess might guess:
1234,1235, 1236.. . . This would take much longer than before—you should do it
as an exercise. Fortunately, there is a branch of mathematics, caibbthatorics,

that studies counting. Some of its results will make life much easier for us.

3.3 Combinatorics

3.3.1 Basic Rulesfor Counting

The counting methods we need will be based on only two simple principles. The
first notes that if you want a complete count of the outcomes in two events that do
not overlap, you may count them separately and add the two counts. In our formal
notation, AN B = ¢, whereg is the event with no outcomes, means that the two
events have no outcome in common. Tmeon of A and B, AU B, is, of course,

the event that the outcome is either in A or in B.

Addition Rule. Inthe case AAB = ¢, |A UB| = |A| + |B|.

This rule is obvious enough, though we will use it very often. For example, in a
poll of candidates for a political office, candidate DiBiasi might drop out of the race
between the time of the poll and the time of the statistical analysis. Then it would
make sense to combine the formerly distinct categories DiBiasi and Undecided
into a single category and sum the numbers of subjects in the two old categories.

The second of our two principles is less obvious. We will illustrate with an
example:

Example. The menu for a Chinese restaurant has on it three appetizers: hot anc
sour soup, egg rolls, and steamed dumplings. There are four main courses: peppe
beef, lemon chicken, sweet and sour pork, and shrimp stir-fry. A meal consists of
one appetizer and one main course; how many meals are possible? It would be
easy to list them, but there is a shortcut: Construct a table.

Main Course
beef chicken pork shrimp
soup
Appetizer  egg rolls X
dumplings

Eachcell (rectangle) corresponds to a distinct meal; for example, the marked
cell corresponds to a lunch of egg rolls followed by sweet and sour pork. The
number of cells is just rowsx columns 34 = 12 meals.

This should remind you of the number of distinct treatment levels in a two-way
layout with/ rows andn columns, which was of courée: (see 1.4.1). To formalize
this idea, recall from mathematics thatx B, the Cartesian product of the sets
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A and B, is the set of all ordered paira,(b) in whicha € A andb € B. In the
restaurant example, we would write our meal (egg rolls, sweet and sour pork).

Multiplication Rule. |A x B| = |A| - | B|

Example. Your daughter’s best friend was assigned to the most popular teacher
in their elementary school grade level, supposedly by random assignment, in eacl
of the first four grades. This makes you suspicious that the assignments were no
done honestly. There are five teachers in each grade. You reason, by using th
multiplication rule three times, that there are 5 x 5 x 5 = 625 different teacher
assignments possible, one factor per grade. Therefore, the probability that the gir
would be this lucky is 1/625= 0.0016, which sounds very lucky indeed.

3.3.2 Counting Lists

We will now use these principles to derive three special formulas that will, with
ingenuity, solve most of the counting problems faced by statisticians. Imagine that
we have an urn witlk marbles in it; but now all the marbles have labels, so we
can tell them apart once they are out of the jar.

Example. Let the 26 marbles correspond to the letters of the Roman alphabet.
We could create all six-letter “words” by removing letters from the jar, such as
GXNGEK. Notice that we allowed G to appear twice, as often happens with real
words, by replacing its marble after it was used the first time.

We could potentially make all such words by the following procedure:

Urn Problem 1. Remove a marble, write down its label, apat it back. Now
remove a second marble, write down its label below the first one, and put it back.
Continue until the list hak entries in it. How many lists are possible? We call this
countingordered lists with replacement.

The teacher assignment problem was an instance of this; the same solutior
technigue works. We havechoices for each of thiestages, so the multiplication
rule tells us that we have

k copies
We have established the following result:

Proposition. Thenumber of ordered lists of k£ objectstaken with replacement from
aset of n objectsisnX.

Example (cont.). In the six-letter word problem; = 26 andk = 6; therefore,
we could get 26 = 308,915,776 different words.

Example. Eight swimmers are about to race in the Olympic games. The first to
finish will get a gold medal, the second a silver medal, and the third a bronze. How
many distributions of medals are possible? The gold medal can go to one of eight
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competitors. But then the silver medal can go to only one of seven swimmers,
because no one may receive two. Finally, the bronze can go to one of the six
remaining swimmers. By the multiplication rule, there are/8 6 = 336 placing
orders.

Our most recent formula does not apply; this is an instance of

Urn Problem 2. Choose a marble, write it dowleaveit out, and repeat until you
have a list ofk marbles. How many lists are possible? This is countirdgred
lists without replacement; we call themper mutations of n taken k at atime. The
mathematical symbol for the number of listsig,(

The Olympic example, which is counted by {83hows us how to do this:
Proposition. (n)y =n-n—1)-n —2)---(n — k + 1).

The last factor appears because before the selection of the last marble, we hav
removedk — 1 of the nmarbles, leaving — (k — 1) to choose among.

Example. Of the 50 United States, 15 have an Atlantic coastline. A researcher
picks 6 states at random for a detailed study of their emergency preparedness fo
severe wind storms. Obviously, it would be a poor sample group that did notinclude
any Atlantic coastal states, which are subject to hurricanes and nor'easters. Wha
is the probability that her sample, by accident, will include no Atlantic coastal
states?

First notice that if she picks her states in some sequence, then she essentially he
Urn Problem 2, and there are (33 50-49-48-47-46-45 = 11,441,304,000
possible sequences of choices. That will be the denominator, if we assume tha
they are all equally likely. If we consider the event that they are all chosen from
among the 56- 15 = 35 non-Atlantic states, these peculiar sample sequences may
be chosen in

(35)% =35-34-33-32-31-30=1,168,675,200
ways. Therefore, the probability of getting a bad sample is

. 1,168,675,200
P(6 non-Atlantic|6 states} 11.441,304000 — 0.102

Unfortunately, this is rather likely; about one time in 10.

Example. A product testing lab wants to evaluate 5 new automobiles. Each driver

will try all the cars. There may be an order effect; for example, there may be an

unconscious bias in favor of the first car driven. Therefore, different drivers are

to test the 5 cars in different orders. How many such orders are possible? This is
like drawing the names of the cars from a jar without replacement; so we have
(5)55=5-4-3.-2-1= 120 sequences.

This last should be familiarn, = n! (n factorial), which we call simply
the permutations of things. This leads to a useful alternative formula for per-
mutations: To find the total number of complete list$)(we arrange the first
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marbles in &), ways, then the remaining— & in (n — k)! ways. Therefore, by the
multiplication rule,n! = (n);(n — k)!. We may then solve for the unknown term:

Proposition. (n); = n!/(n — k)!

For example, in the medal problem, we could have calculated=£83!/5! =
4032(0/120 = 336. Notice that our new formula is rarely convenient for compu-
tation: The numbers stay much smaller if we use the original formula. It will be
useful, however, for algebraic manipulation.

3.3.3 Combinations

You may have complained that the Atlantic states problem was not explained
realistically. We talked about selecting our sample in order; but you may know

that for purposes of the study of emergency planning, the order of choice simply
did not matter. It was just a set of 6 states. Therefore, we have counted far too
many samples, because we have counted (Maine, Oregon, Nebraska, Rhode Islan
Texas, West Virginia) separately from (Oregon, Texas, Nebraska, West Virginia,

Rhode Island, Maine). We need another counting formula:

Urn Problem 3. Remove a handful (set) éfmarbles from a jar containing How
many sets are possible? This is countimgrdered sets, without replacement; we
call themcombinations of n things taken k at a time. The mathematical symbol
for the number of sets |$K’) sometimes read “ehoosek.”

Some ingenuity will be required to find the number of combinations. | propose
that we do it by counting the number of permutations in Urn Problem 2 by a slightly
different procedure: (1) Remove a handfukaharbles from the jar of; then (2)
place the unordered handful in an ordered row on the table. We can construct even
permutation in this way. The multiplication rule says that we multiply the number
of ways each of the two steps was performed to get the total number of possible
lists. Therefore,n), = (Z) - (k)¢. The first and third counts are known, so once
again we may solve for the unknown term:

(5) =

Staring at this formula, we see some equivalent ways of writing it:

Theorem (combinations).

Proposition.
0 ()= 2)
(-5

The first fact just notices that removirkgmarbles from a jar is the same as
leavingn — k marbles behind in the jar.
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Example. There are(‘rgo) = 50!/(6'44") samples of 6 states. No one would calcu-
late 50! by choice; but we consider also the two equivalent formulas in (i) of the
proposition, and computing (566! = (50-49.48.47.46-45)/(6-5-4-3-2-1) =
15,890,700 requires by far the least arithmetic.

We now solve a counting problem that will be of repeated interest from here on.
From an urn withW white marbles an® black marbles, remove all the marbles,
one at a time without replacement, and make an ordered list of their colors. For
example, if there are 3 white and 4 black marbles, one such Ifsti§ , @ ¢ 3.

How many lists are possible?

The trick here will be to translate the problem into a second urn problem, as
follows: ObtainW + B additional marbles, number them, and place them in a
second urn. Now number the positions in your ordered list, also fron¥14oB.
Reach into the second urn and select an unordered handfdladfthe numbered
marbles. Put white marbles into the numbered list positions you have chosen, anc
black marbles in all the others. In our example, we must have picked marbles
numbered 2, 4, and 6. This process uniquely determines all possible lists, so the
number of lists ig"7*).

When all these lists of black and white marbles are picked from a well-stirred
urn, we might assume each to be equally likely. Then choosing a list is called a
hypergeometric process. It is the first important example of stochastic process.

We will see several other important examples in this course; but we will construct
them all as ways to approximate hypergeometric processes.

3.3.4 Multinomial Counting

Example. A professor has a peculiar grading curve, so that she expects to assigr
grades to the 12 students in her new graduate seminar as follows: 5 As, 4 B’s,
2C’s, and 1 D. She has graded no work, so she knows nothing as of yet about he
student’s performance. In how many ways will she be able to assign grades at the
end of the term?

We can assign grades one at a time; she may choose the students to recei\
As in (152) ways. Then she has 7 students left; she may give 4 of them B’s in

(;) ways. The remaining 3 students may get the 2 C'{;Jrways, and the last
student automatically gets the D. The multiplication rule says that the grades have
(D) - () - ) = 83,160 distributions.

Notice that when we write out the calculation from the theorem, we get
several very convenient cancellations: (AB!7")) - (7!/(4!131) - (3!/(2!1})) =
121/(5!41211.

Definition. The number of ways of assigning objects to category i, other
objects to category,2.., and finally the last:; objects to category, where
>i_yn1 = n, is the multinomial symbol. Itis denoted by, " ).

ning---ng

n
nano--Ng

Proposition. ( ) =n!/(nalno! - nyl).
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You should prove this as an exercise (perhaps by cancellation as in the exampl
above; or you might imitate the proof of the theorem about combinations). Since
choosing a set dffromn is the same as grouping objects into a selected getraf
another set of — I that was not selected, th¢f) = (, " ,). Notice generally that
any rearrangement (permutation) of awategories leads to the same multinomial
symbol, because we just multiply our denominator factorials in a different order.

3.4 Some Probability Calculations

3.4.1 Complicated Counts

Our small tool kit of counting methods will already allow us to calculate a great
many interesting probabilities.

Example. We can test a new drug for lowering blood pressure in the following
plausible way: Of the next 40 patients that might benefit from the drug, match them
so that each pair of patients is as similar as possible in blood pressure, sex, age
health, and other relevant matters. We now have 20 pairs; for each, flip a coin, anc
give the standard treatment to one patient and the new drug to the other. We will
evaluate them after six weeks and, for each pair, decide which patient has lowel
blood pressure. Thus, we will end up with a count of how many times out of 20
the new drug was the winner. We might decide to advocate use of the new drug if
it wins, for example, 14 or more comparisons. If, in fact, the new drug is no better
than the old, what is the probability we will (unfortunately) advocate it anyway?
(This is another example of tHeequentist style of inference.)

There would be 2 sequences of wins by either the new or old treatment; we
are presuming these equally likely. (fﬁ) of these sequences, the new drug was
superior exactly 14 times similarly for 15, 186,., 20. Therefore,

+ 60,460
P(14 or more|20 pairs} (1) + 1;’) Go) _ = T 048576 0.05766.

If this chance of making a foolish claim is too large for us, we might require 15 or
more wins; we easily check that P(15 or more|20 pait€).0207, which is safer.

Example. Remember that Fisher’s tea-tasting experimentwas actually bigger than
our example suggested; to make it more informative, he had his hostess taste
cups of tea, in which 4 had tea poured first. She then tried to determine which 4.
Our first step previously was to list all her possible sets of guesses; we noticed tha
the list is too long to be fun to write down. But how we are more sophisticated:
There are(i) = 70 lists. The probability that she will get all four guesses right

is 1/70= 0.0143. Most of us would be very impressed, and perhaps modify our
opinion that she was just guessing. Should we be surprised if she gets 3 out of
correct? Enumerate these lists by noting that she must choose 3 of the 4 cups the
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had tea first; and then 1 of the 4 that had milk first. We get

4\ (4
16
P(3 of 4|4 of 8 tea firs JO) _ 16 _ 0.229.
@ 70
Our total probability for a result this good, 3 or 4 out of 4 correct, is{1§/70 =

0.243, or about 1 in 4. We are not likely to be impressed with her skill.

Example. Scientists suspect that initial handling of patients with a certain form of
acute mental illness may have something to do with chances of recovery. Therefore
when a long-term drug therapy is proposed, they are careful to create a patien
pool for a study that has exactly 5 patients who were first seen by each of the 16
participating clinics (for a total of 80 patients).

For a small substudy, 7 patients from this pool are selected at random. What is
the probability that it will be found that 2 patients in this substudy came from the
same clinic (while the other 5 came from 5 additional clinics)?

Of course, there are a total (ﬁ]") equally likely samples for the substudy. We
need to count the samples that duplicate a clinic, in stages. First, which clinic ap-
pears twice and which clinics appear once? We may decide t@%ﬁﬂ) different
ways; the 1 refers to the duplicated clinic, the 5 to the clinics represented by one
patient each, and the 10 to clinics not represented. We can pick the patients fron
that duplicated clinic u@ ways, and from each of the other 5 clinics we may pick

the patient in(}) ways. Therefore,
5
(151060
(7)

This coincidence will happen almost half the time.

P(one clinic duplicated|7 patients) = 0.473.

3.4.2 TheBirthday Problem

Example. In a class with 35 students, what is the probability that no two of them
will have a birthday on the same day of the year? We will assume, not quite
correctly, that all birthdays are equally likely, and that there are 365 of them.

Most people will find the answer surprising; to understand why, let us first ask
what one might expect the answer to be like:

Naive Intuition. if the number of people is small compared to the number of
birthdays, then the probability of having any two the same is small, since then the
average time between birthdays is certainly large.

Since 35is fairly small compared to 365, people’s birthdays have plenty of room
to be scattered over the year; we expect that the probability of a coincidence is
fairly small.

This is an example of anccupancy problem: Let there be: slots in a board
(possible birth dates). Throw marbles at the board (people) so that they fall
in slots at random; each slot can potentially hold all the marbles. What is the
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probability that no two marbles fall in the same slot (no two people have the same
birthday)?

The denominator is easy: By the first urn problem, throwing a marble at a slot
is like picking a slot number out of a jar. Since more than one marble can fall
in a slot, we are choosing slots with replacement. There:areays this can be
done; presumably they are equally likely. On the other hand, for the numerator we
want to count the number of ways slots can be chosen no more than once; that is
without replacement. By the second urn problem, we can do thajim@ys. We
state our conclusion as a proposition:

Proposition. The probability that no two objects occupy the same category, from
among k assigned at randomto n categories, is (n)/n*.

Example (cont.). In the birthday problemy = 365 andk = 35, so that the
probability of no coincidences is just aboutl86. It would actually be a bit sur-
prising if no two people in the class had the same birthday. A laborious calculation
shows that in any class with at least 23 students, there is a less than even chanc
(0.5 probability) that no two will share a birthday.

3.4.3 General Principles About Probability

Now that we find ourselves capable of a calculating a number of complicated
probabilities, it might be worth our time to stop and notice some general facts
about equally likely probability.

Since our definition says that P(B) = |A N B|/|B|, we notice that the numer-
ator was defined so it would besabset of the denominator: /1B C B. But then
the numerator set is always no bigger than the denominator, so when we coun
them, 0< |A N B| < |B|. (Counts are, of course, never negative.) We insisted
that B was not an empty set, so we can divide by its caBnin this inequality to
get 0< |A N B|/|B| < 1, But this tells us that for any equally likely probability,

0 < P(A|B) < 1. Certainly, all our example calculations fell between 0 and 1; and
our intuitive idea that probabilities are the proportion of the time something will
happen says this ought to be true.

A couple of special cases are worth noting Alfcannot happen at the same
time asB, then AN B = ¢, and so|lA N B| = 0. Then we have P(8) = 0.

In English, the probability of an event impossible under the circumstances is O.
On the other hand, P(B) = |B|/|B| = 1, and we say that the probability that
anything possible will happen is 1.

Let us see what our addition and multiplication rules for counting tell us gener-
ally about probability. Assume we know that C will happen, and we have any two
events, A and B (for example, two ways that an experiment might be considered
successful). Then the probability that one or the other will happen is

[((AUB)NC)

P(AUB|C) = o
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Informally, we might count the outcomes in A and then count the remaining out-
comes in B. In set notation, this idea of remaining cases is written as the set
difference:

B — A = {outcomes in B and not in A}.

Then clearly,
IANC|+|B-A)NC| |ANC| [(B—A)NC]
IC ICI ICl

because the counts in A and-BA do not overlap. We conclude that there is an
addition rule for our equally likely probabilities: P(4B|C) = P(A|C) + P(B—
A|C).

This general principle has two important special cases. First, what if, as above,
A and B cannot happen at the same time, so thatB\= ¢? Then B— A = B,
and our formula simplifies to P(& B|C) = P(A|C) + P(B|C). In the example of
testing a blood-pressure drug, we could have combined the cases of 14 through 2
wins by summing probabilities of each, instead of adding counts in the numerator:

P(AUB|C) =

2 2 2
P(14 or more|20 pairs} - ﬁ + 22(52 +- (220 = 0.03696+ 0.01479+ - - -

= 0.05766.

For the second case, let B8 C. Then P(AU C|C) = 1, because the same
cases are in the numerator and the denominator. But thenP(A U C|C) =
P(A|C)+ P(C— A|C). Rearrange to get P(EA|C) = 1 — P(A|C). This says that
the probability something withot happen under experimental conditions C is just
1 minus the probability that iill happen.

For such a simple result, this equation is amazingly useful. For example, in the
birthday problem, people most usually ask, What is the probability that there are
any birthday coincidences in a group? To tackle that question directly, | would
need to figure out the probability that exactly two have the same birthday, then the
probability that three do, then that two have one birthday and two another, and so
forth. Each calculation is hard, and there are very many of them. But now | know
what to do (with 35 students):

P(any coincidence35 students} 1 — P(no coincidences|35 students)
=1-0.186=0.814

Very often, thiscomplementary question is much easier to answer.

Does the multiplication rule for counting tell us something similarly useful
about probability computations? Indirectly, it does. If you will, recall the study of
disaster-preparedness in the states; let me ask what is the probability that of twc
states chosen, they are both Atlantic states? This is just like the original problem:
(15)/(50), = (15- 14)/(50- 49) = 3/35. Notice, though, that the calculation can
be factored as a product and the factors each interpreted as probabilities:

15 14
50 29° P(Atlantic|15 of 50) P(Atlantic|14 of 49).
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This says that when we chose the first state, we had 15 chances in 50 of succeedin
but to choose the second state we had to get one of the remaining 14 Atlantic state
from among the remaining 49 states.

We have hit upon a general feature of probabilities that is obvious so long as we
think of them agoroportions of the possibilities: The probability that two things
will both happen is the proportion of the time the first will happen multiplied by
the proportion othose times in which the second also happens.

We can look at this generally for intersections of two events, because we are
concerned with whether both will happen. Multiply both numerator and denomi-
nator by|A N C| (the number of cases when the first thing has happened, which
must not be zero):

IANBNC| |ANC| |ANC| JANBNC]
IC] IANC| |C| IANC|
We can interpret each of the factors as a probability to get

P(ANBIC) = P(AIC) - P(BIA N C).

P(ANBIC) =

This just says, as before, that proportions of proportions are gotten by
multiplication.
Now assemble the results of this section:

Proposition (properties of equally-likely probability).

(i) 0 <P(AB) < 1.
(i) IfANB,thenP(AB)=0.
(i) P(B|B) = 1.
(iv) P(AUB|C)=P(A|IC)+ P(B—A|C); andifANB = ¢, then P(AUBI|C) =
P(AIC) + P(BIC).
(v) P(C—AIC)=1-P(AIC).
(vi) IfANC# ¢, then P(ANB|C) = P(AIC)- P(BJANC).

Not only are these useful now; when later we study other forms of probability,
they will continue to be true.

3.5 Approximations to Coincidence Probabilities

3.5.1 An Upper Bound

Let us return to some issues raised by the surprising results of the birthday prob-
lem (see Section 3.4.2). Itis a bit disturbing that our naive intuition about birthday
coincidences was so wrong. The formula is sufficiently obscure that it contributes
little to our intuitive understanding, and if you compute it multiplication by multi-
plication, itis time-consuming. We will look at sorapproximationsto the answer
that may teach us more.

It would be nice to have an easy-to-calculataximum value for our birthday
probability. If we do a good job, perhaps it will be close to the exact value of our
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probability for a wide range of cases. First, expand our formula for the probability
of no birthday coincidences:

m»_nM—1Mw—a~(n—k+D:<n—l>(n—%>“<n—k+l>

nk n-m----- n n n n

(-39 (-5

This product may be interpreted as the probability that the second birthday was
different from the first, multiplied by the probability that the third was different
from the first two, and so forth. Long products are difficult to work with, so we
use the fact about the logarithm function that kog(= log(a) + log(p) to turn it

into a sum:

- 2)(-2) - (1-157) - Bon(- ).

Reviewing our calculus, there is a maximum that comes from a simple property
of the (natural) logarithm function (in fact, it is sometimésfined this way):
log(1+x) = flﬂ dt \Whenever > 0, since under the integral signd s < 1+x,
we havet < 1. But then

1+x dt 1+4+x
Iog(1+x):/ —5/ dt = x.
1 t 1

On the other hand, if < 0,then1+x <t <1, and we havé > 1. Then

1+x dt 1 dt 1
Iwﬂ+ﬂ=/ ——=—/ —s—/ dt = —(—x) = x.
1 t 1+4+x t 1+4+x

The inequality is the same for both positive and negatiysee Figure 3.2).
We summarize:

Proposition. log(1+ x) < x for all x > —1.
Apply this result to our expansion of the log-probability:

(s S LN
log = Elog(l )= ;n
Now you should show as an exercise that the sum of the Adirsbtegers
is Y7 i = (m(m + 1))/2 = ("}7). Replacing our rightmost term, we get
log (n)i/n* < —(5)/n. Now, to get our probabilities back we need to undo the
logarithm. The exponential function is the inverse function to the natural loga-
rithm; that is,¢'°9®) = x and log¢*) = x. Furthermore, the exponential function,
like the logarithm, is anondecreasing function (a functionf is nondecreasing
if whenevera < b, we also havef(a) < f(b)). Therefore, they both preserve
inequalities. Apply the exponential function to both sides of our inequality:

Proposition. P(no coincidence) = (n);/n* < e~ (/1.
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-1 0 1 2

FIGURE 3.2.x versus log(H x)

(We have used the shorthand probability notation here (see 2.1). What condition
(IB) are we assuming that you know?)

We have the upper limit we wanted. In the case of the class in whieh35,
this says that 186 < 0.196, which is fairly close, with much less arithmetic.
Remember tha@) is the number opairs of people (choose 2 from the class of
k). Furthermore, as an exponent becomes a large negative number, the exponel
tial function approaches zero. Then the inequality says that the probability of no
coincidences is even smaller. This gives us an improved intuition.

Improved Intuition 1. Coincidences become highly probable when the number
of pairs of people is large compared to the number of birthdays.

This will not be hard to remember, since of course individuals do not have
birthday coincidences, two people at a time do.

3.5.2 A Lower Bound

We have a useful answer to the question, When are coincidental joint occupation:s
likely? But an inequality tells less than half the story. We would also like to know
when coincidences are unlikely. Therefore, we need a convemiaimhum value
for the probability; when the minimum is close to one, then so must be the exact
probability.

A strategy remarkably parallel to the last one will work here, too. First note that
since log(1)= 0, then for any positive number, 0 = log(1) = log(a - 1/a) =
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log(a) +log(1/a). Thenlog(l/a) = — log(a). Apply this to each term in our sum
for the log-probability lodn — i /n) = —log(n/(n —i)) = —log(1+i/(n — i)).
Then our simple inequality for the logarithm yields igg — i)/n) > —i/(n — i),
where our inequality has reversed, as we wanted it to, because of the minus sigr
So our log-probability is

. k—1 .

)=

(”)k Zl (
=1

We do not have a convenient sum formula, because the denominaters @re

not constant; therefore, we will replace them by their smallest valuek + 1.

This makes the right side even smaller, so our inequality is still true:

=1 k-1 ; k
|Og@>— Z (2)
nk — —n—i —n— k+1 n—k+1

Again, taking the exponential of both sides, we get a reversed inequality:
Proposition. P(no coincidence) = (n); /n* > e~ ()/(1—k+D),

In our example withk = 35, we compute 166 < 0.186.

We conclude that when the exponent is small, tha@si,s small compared to
n — k + 1, then the probability of no coincidence is close to one. In that case, of
coursek itself is small compared te — k + 1, which is therefore little different
fromn. Thus(’;) is small compared ta. Then we have another improvement for
our intuition:

Improved Intuition 2. When the number of pairs of people is small compared to
the number of birthdays, coincidences are rare.

For example, among 6 students sharing a house, there are 15 pairs of birthday:s
out of 365 possible birthdays. We conjecture that coincidences are unlikely. Our
inequality says that the probability of no coincidences is at least 0.9592. In fact, it
is 0.9595.

When we say that a numberis small compared to a numbkrwe mean more
precisely that the fraction/b is close to zero, and in particular is much less than
one. In our example, 15/365 0.04.

3.5.3 A Useful Approximation
It will be convenient to combine our inequalities into a single fact:
Theorem (the birthday inequality).

—(§)/(n—k+1) < @ < e G)/n

n

Inthe casé& = 6, we now bracket our answer rather tightly9897 > 0.9595>
0.9592. Either bound could be used as a nice quick approximate probability. When
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can we get away with this? When the upper and lower bound are close together
then we may be sure that either approximation is good. To see how close togethe

the two exponents are, we first compare denominaters:; — * = ”(n"_‘klﬂ).

After rearrangement, the exponents are relatec("b)),((n —k+1) = (") /n +
((k — 1)( ))/(n(n — k + 1)). Now using the fundamental fact about exponents that
e?? = ¢, we are able to rewrite the birthday inequality as

o O @Dtk < O Cym,
n

If the second exponent on the left is close to zero, then its exponential is close
to one, because® = 1 and the exponential function is continuous. Therefore,
the upper and lower bounds are within a factor hardly different from one of each
other. We have established a practically useful approximation that works when
((k— 1)(’;))/(n(n —k+1))iscloseto 0. Butitis easy to translate this into a condition
easier to remember by looking at the highest powers when this is multiplied out:

Proposition. (n)/n* ~ ¢=()/" when & is small compared to 212

In thek = 6 example, we are saying thaB895~ 0.9597 because our relative
error estimate 0.00048 is small. We will see a number of other important uses for
this approximation later in the book.

Trying to find simple bounds and approximations when probability calculations
become complicated will be fundamental to our progress through mathematical
statistics. We call thesasymptotic methods.

3.6 Sampling

One way of looking at statistical experimentation is that we are trying to find out
something about a great many potential subjects of a survey or repetitions of a
measurement. We call the collection of these potential subjects or measurement
the population of interest. Of course, because of our limited resources, we can
usually only study relatively few subjects, or carry out only a few replications, from
among the population. We call the subjects actually studied, or the measurement
actually carried out, sample.

A survey, such as a political poll, can be thought of as removing a random
collection ofn subjects (sample) from among the poolmfpotential subjects
(population) without replacement (it would be stupid to survey anybody twice)
so that they may be asked certain questions. Statisticians call shigpke ran-
dom sample from a finite population. There are, of coursenn(, possible ordered
samples: Our probability calculations will use this as the denominator.

If we had drawn the subjects with replacement, risking repeated interviews,
there would ben”" ordered samples; notice that this is now the denominator in
probability calculations and is a much simpler number to work with. The solution
to the birthday problem says that the probability that nobody gets interviewed twice
is the ratio (m)/m". The inequality (m)/m" > e~()/=+1 then tells us that
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this probability is close to 1 so long as the number of pairs of subjects in a sample
(’;) is small compared to the remaining population size- n + 1. When this is

so, though we sample without replacement, we sometimes do the easier arithmeti
for the case of sampling with replacement because it is unlikely we would have
interviewed anybody twice. We will see later that in such cases the errors we have
introduced are usually small.

For example, in a small city with 100,000 voters, a sample with replacement of
100 would have better than probability (2)/(100000-100+3) . 0. 95 of having no
duplications. As the population size goes up for a given size sample, the probability
of no duplication approaches 1. Therefore, if we are willing to pretend that there is
no chance of duplication, we say that we are sampling fromfamte population.

3.7 Summary

Whenever we reason about uncertain things, such as experiments not yet pel
formed, by trying to measure the proportion of times various things would happen,
we are applyingrobability theory. In simple situations we may cowqtially likely
outcomes, so that a probability is R& = |A N B|/|B| (2.1). This counting is
easy until the number of outcomes becomes numerous; then we invoke the sci
ence of counting, calledombinatorics, to help us. Most counting problems of
interest to statisticians may be solved with the aigafnutations, the number of
ordered lists ok things fromn, which is (n), = n!/(n — k!) (3.2), or with com-
binations, the number of sets df from n, given by(}) = n!/(k!(n — k)!) (3.3).

An amazing number of complicated probabilities may be calculated using these.
For example, theccupancy problem, which asks how probable it is that there
will be no duplicate assignments tocategories byt observations, has solution
P(no duplicates|assigned ta) = (% (4.2). Then we discover an approximate or
asymptotic method for calculating this probability when the number of pairings of

k objects is small compared ig (% ~ e () (5.3). Finally, we use this approx-
imation to investigate when the distinction betwdigite andinfinite population
sampling becomes important (6).

3.8 Exercises

1. You awaken in the middle of the night because a truck has backfired. You
glance at your lighted bedside clock, and as always, to the nearest minute
the minute hand points to some number between 00 and 59. What is the
probability that the minute hand points nearest to a number divisible by 7?

2. A student has 5 clean shirts (white, brown, blue, green, and maroon) and 5
clean pants of the same colors in his closet. He has to dress before dawr
without waking his roommate, so he grabs a pair of pants and a shirt without
being able to see them and puts them on. What is the probability that the two
arenot the same color?
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List all the ways Fisher’s hostess could choose the 4 out of 8 cups that she
believed had tea poured first. How long is your list?

. How many nonnegative integers with at most 3 decimal digits are there?

Solve the problem first by ordinary arithmetic, then using the solution to Urn
Problem 1.

. You intend to go to two of the Grand Canyon, the Smithsonian, Disney World,

and Niagara Falls, one this summer and the other next summer. List all possible
vacation plans. Now check that your count is right by applying the formula
for permutations.

. You are going to spend a month each studying the penal systems of 12 of the

country’s 50 states. Count how many different ways (in sequences of states)
you can spend your year.

. A deck of playing cards consists of 52 carés {4 suits} x {L3 ranks}. A

poker hand consists of five different cards, chosen so that any five are equally
likely. A spade is one of the suits, so there are 13 of them in the deck. What
is the probability that a poker hand will consist of five spades?

. To keep control of my time, | decide this semester to be active in only 3 of

bowling, volleyball, softball, basketball, and rugby. How many choices are
possible? List all the possibilities and then count again using the combinations
formula.

. Showthat}) = (:-1)+(",") by algebra. Now show it again, in a completely

different way, bykinlterpreting the symbols as counts in Urn Problem 3.

Use Exercise 9 and the fact thg) = (!) = 1 (since there is only one set
with no marbles and one set with all the marbles) to construct the table of
combination symbol§}),

n\k||Oo]1]2]3]|4|5]|6]|7|
1 1)1

2 [[1]2]1

3 133 [1

4 [1]4]6 |41

5 [1]5]10[10] 5] 1

6 [[1]6]15[20]15] 6 |1

7 J1]7]21]35]35]21][7[1]

etc. (Pascal’striangle) by repeated addition.

I walk to work through a section of town where all streets are either north—
south or east—west, and | must go 6 blocks west and 4 blocks south. Of course
| never take a path that would take me farther away from work. How many
possible complete routes from home to work do | have to choose from?
Prove thai(, " ) =n!/(nilno! - ni!).

A police department has 10 detectives in the homicide division. In how many
ways can the supervisor assign 4 detectives to the Coors case and 3 othe
detectives to the Hard case?
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In the 5000 meter women’s Olympic finals there are 4 Americans, 2 Cana-
dians, and 2 Jamaicans, plus one runner each from Great Britain, Korea,
Ukraine, and Japan.

a. How many finishing orders, by nationality ambt the name of the
individual, are possible in this race?

b. Ifasfarasyouknow any finishing order is as likely as any other, whatis the
probability that the first two finishers will come from the same country?

Of the last 10 students who came from a certain small town, 7 finished above
the middle of their classes at the University of Minnesota. If you believe
that students from that small town are really typical of all UM students, how
probable is this result? Assume that by “typical” we mean that all possible
sequences like ABAAABBAAA of the arriving students finishing above (A)
and below (B) the middle are equally likely.

Of 40 engineering majors in an engineering statistics class, 12 are mechanica
engineers and 15 are industrial engineers. The instructor chooses 10 student
to represent the class in a statistics contest.

If major should have no effect on who is chosen, what is the probability
that 3 mechanical engineers and 5 industrial engineers will be chosen for the
contest?

You are playing a version of poker in which all cards are dealt from a 52-card
deck. The four cards in your hand include one ace. Some of your opponents’
cards are face up: You see among them one ace and 3 other cards. You ar
about to be dealt two more cards. What is the probability that at least one of
them will be an ace?

Male and female chicks are very difficult to distinguish without expert exam-
ination. Eight of 12 chicks in a batch are female. You casually select 5 chicks
from the batch.

a. What is the probability that they are all female?
b. What is the probability that there are 3 males and 2 females?

The 9 sororities on a certain campus form a sorority senate consisting of 7
representatives from each sorority. The president is then supposed to choos
an executive committee of 8 senators. Unfortunately, 4 of the executive com-
mittee turn out to be from one sorority and 4 from another, and the president
is accused of favoring these sororities. She claims it was an accident, that
they were chosen without regard to the sorority they came from. Find the
probability that this would have happened by chance.

There are sixteen well-hidden cameras, each of which is triggered by a moose
wandering into its range; as far as we know, all are equally well placed for
observing moose. If we wait until 9 pictures have been taken, what is the
probability that 9 different cameras will have been involved? Assume that
separate triggering events are independent.

In Exercise 20, what is the probability that exactly 7 cameras will have been
involved?
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The 150 voters in a small town are to be chosen for a panel of 12 jurors by lot,
that is, chance. Of course, their names should be removed from the voter list
as they are chosen, so there will be no duplications; unfortunately, the county
clerkis not that smart. What is the probability that some people will be chosen
twice for the panel? Also, calculate simpler upper and lower bounds for your
answer, using the results of this chapter.

Prove thafy"" ;i = (m(m + 1)/2) = ("}%).

Prove that* > 1+ x for all numberst.

A bag of candy is supposed to contain 20 chocolates and 20 caramels. After
you have eaten your way through 5 pieces, you realize suddenly that they
were all caramels.

a. If the bag was well mixed, what is the probability that this would have
happened?

b. An easier, approximate, version of this calculation follows from the ap-
proximation for the probability of birthday coincidences. Find it, and
compare.

Show that ifk® is small compared tori2, then & — 1)(5)/(n(n — k + 1)) is
close to zero.

3.9 Supplementary Exercises

27.

28.

29.

30.

31

The Virginia Lottery Pick 4 game draws 4 digits (from 0 though 9) each from
an urn containing all ten digits.

a. A player wins by having selected the same 4 digits in the same order, in
advance of the drawing. What is the probability of winning?

b. Alesser prize is offered for getting any three of the digits correct including
order, but not a fourth. What is the probability of winning this prize?

a. More generally than in Exercise 23, show thaf_,, (") = (r’:lj‘rll) for any
integerst > m > 1.

b. Use (a) to show tha}|_, i2 = (n(n + 1)(2n + 1))/6.

In the game of poker, the hand callegair consists of 2 cards of the same

rank, plus 3 cards of ranks different from the first and different from each

other. If the deal is from a well-shuffled deck, what is the probability that a

hand will be a pair?

The Virginia Association of Triplets has 9 sets of triplets as members (for

a total of 27 individuals). Four individual members are picked at random to

go to a national convention. What is the probability that some two of the

delegates will be from the same set of triplets (but the other two delegates are

from two other sets)?

You are a federal narcotics agent, and you have gotten a reliable tip that 6

one-kilogram packets of cocaine have been placed, one to a locker, among

the 100 rental lockers at the local airport. You have gotten a search warrant
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to search the lockers, but time is very tight. Your partner has searched nine
lockers and found two packets. You have searched eight lockers and found
one packet. What is the probability that among the next three lockers you
open, there will be at least one package of cocaine?

You are thinking of installing a robot inspector to spot defective products at
the end of an assembly line. To test it you run 6 good and 6 bad items through
the inspector, in random order, and ask it to select the 6 that it judges are bad
If it finds 5 or 6 of the 6 bad ones in its list of 6, you will pass it. If the robot
labels defective products purely by chance, what is the probability that you
will pass it anyway?

A publisher sends one copy each of 25 new books to every large newspa-
per. The editors of the 6 large newspapers in the state each pick completely
randomly one book from that list to have reviewed in next Sunday’s papers.
What is the probability that there will be more than one review of at least one
book next Sunday?

. Itis 1944, and soldiers are building two runways, at the north end and at the

south end of a Pacific atoll. There are 25 foxholes near the south runway and
20 foxholes near the north runway. One evening, 8 soldiers are working on
the south runway and 6 soldiers are working on the north runway, so late at
night that they can no longer see each other. The air-raid siren sounds, anc
each soldier independently chooses a foxhole and leaps into it.

a. What is the probability that in some foxholes, a soldier lands on top of
another soldier at the south runway? at the north runway?

b. What is the probability that somewhere on the atoll, a soldier lands on top
of another soldier?

Four different digits from among the digits 1,.2, , 9 are picked at random,
one at a time.

a. What is the probability that they are selectedimereasing numerical
order? (Thatis 2, 3, 7, 9 is a success, but 4, 8, 1, 3 is a failure.)

b. If 3 is the first digit selected, what is now the probability that the four
digits selected will be in increasing numerical order?

An absent-minded grandfather hands out 7 pieces of candy among his 12
grandchildren. He gives each piece to arandomly chosen child, without regard
to whether that child has already received candy.

a. What is the probability that 7 different children will get candy?
b. What is the probability that exactly 6 different children will get candy?

Thereisan obvious Urn Problem Four: How mangrdered sets ok marbles

can be chosewith replacement from amongn distinct marbles?

Hint: Each such set is determined by knowing how many 1's, how many
2's, and so forth, up to how mamys you got in your set ok marbles. You
might keep track of these as follows: Put a movable marker on your table to
separate the 1's from the 2's, one to separate the 2's from the 3;9nd one
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to separate the (# 1)'s from then’s. There will always be — 1 markers on

the table. Now write down the marbles in the appropriate place as they come
in. For example, 11344445 might keep track of the set of 2 ones, no twos,

1 three, 4 fours, and 1 five, in the case= 5 andk = 8. The vertical bars

are your markers. Now count the possible strings of numeralseparating
markers.

A millionaire intends to give seven identical, perfect ten-carat blue diamonds
to his four children. They only care how many, not which ones, they get. In
how many ways can he distribute the diamonds?

Hint: Use the results of Exercise 37.

In Urn Problem 4 (Exercise 37) you established that the number of ways
of drawingk unordered objects, with replacement, from amerapjects is
(”jf;l). Prove (that is, convince me you know why it is true) that this count

("+*%) is always less than or equal to'¢()/")/ k!.

. Infact, the second expression in Exercise 39 may be shown todsgraptotic

approximation to the first wherk /n is close to zero: That s, the ratio between
the count and the approximate count is close to one. We will illustrate this by
example:

A computer arithmetic program for children picks 4 integers between 1 and 20,
arranges them in ascending order, and presents them as an addition problen
for example, A 9 4 9 + 13. How many different problems can it generate?
Now calculate the approximate answer from Exercise 39 and compare.

Dice are cubes (6 sides) in which the sides are numbered 1, 2, 3, 4, 5, 6. Wher
one of these cubes is rolled across a table, it is believed to be equally likely
that each of the sides will end face up; the number facing up is the result of
that roll. In the game of Yahtzee, a player rolls 5 dice at once; the 5 numbers
that result are a hand.

Afullhouse is a hand in which one number comes up three times and a second
different, number comes up twice. What is the probability that a Yahtzee hand
will be a full house?

A consumer group claims that heavy-metal music causes cancer. As a fan of
the music, I doubt this, but I will do an experiment with rats anyway, to check.

| expose 8 rats to no music, 8 rats to a low dose of music, and 8 rats to a high
dose of music. Eventually, 3 of the rats with no music exposure get cancer,
2 of the rats with low doses get cancer, and 5 of the rats with high doses get
cancer.

In my opinion, those rats who got cancer were destined to do so, and all
possible assignments of cancerous and cancer-free rats to the three trea
ment groups could just as easily have happened. In that case, what was the
probability of the results we actually observed?

. Arunstest is a way to tell whether or not there may be “serial dependence” in

a sequence of experiments, that is, whether each experiment is affecting late!
results. Imagine that in our study of headache remedies, pill A did better in
cases and pill B did better in the remainihgases. We count the runs, that
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is, the number of sets of adjacent cases with the same results. (For exampl
ABBAAABA has 5 runs: A, BB, AAA, B, and A)) If there are too few (or
too many) runs, each result may be influencing later results.

a. Find the probability that there are exac#yruns, wherek is aneven
number, if all sequences are equally likely.
(Hint: If there arek runs, then you already know whektg2 A's andk/2
B’s are. You just have to count the ways of placing the rest.)

b. Find the probability of 4 runs if aspirin was better 5 times and Tylenol was
better 6 times.

. Now find the answer to Exercise 43 in the case wheieanodd number.

Apply your formula to find the probability of 5 runs in the aspirin/Tylenol
problem.

When we were defining the Kruskal-Wallis statisti¢see 2.5.5), we applied
analysis of variance to the ranks.1., n of a collection of measurements.
Assuming that there were no ties, use Exercise 28 to show that the correctec
sum of squares SS (see 2.5.3) is alwayfa ¢ 1)(n — 1))/12, and therefore

R? = SSE/SS= X

n—1°
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CHAPTER 4

Other Probability Models

4.1 Introduction

We think of probability as measuring our degree of uncertainty in the results of
experiments not performed yet. But in general, there is no reason to believe tha
each of our possible outcomes would be equally likely, as we assumed in the lasi
chapter. Can we still come up with a science of probabilities in other cases? Some
examples will suggest directions in which the concept might be extended.

Example. The weather forecast asserts that the probability of rain for tomorrow is
20%. What can be meant by that? We could imagine consulting extensive weathel
records, until we find 100 days in the past that were as much like today as possible
Then we assume that tomorrow is equally likely to be most similar to each of the
100 days that followed. Now, simply count how many of those days reported rain;
if the answer is 20, we have our forecast. The procedure is laborious and fraught
with difficult decisions; but presumably a computer could be programmed to do
it. However, meteorologists of my acquaintance assure me that it is not done this
way.

Example (Buffon needle problei Consider a striped flag with all stripes of
equal width, such as the stripe field of the U.S. flag. Throw a needle of the same
length as the width of a stripe at random onto the field (see Figure 4.1). What is
the probability that it will cross the boundary of a stripe?

It sounds as if all positions and orientations are “equally likely”; but since there
are anuncountable infinity of these, we cannot answer the question directly from
combinatorics. It was claimed in the last chapter that the probabilitysis Since
this number idrrational, we cannot hope to transform it to any combinatorial
problem; another approach will be necessary.
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FIGURE 4.1. Buffon needle problem

The strategy of this chapter will be to describe a general probability theory, of
which combinatorial probability is only one special case. We will try as we go to
preserve as much as possible of the essential character of our work so far, withou
mentioning equal likelihood. Then we will develop some general tools for working
with probabilities, however these arise.

Time to Review

Algebra of sets
Calculus of trigonometric functions
Geometric series

4.2 Geometric Probability

4.2.1 Uniform Geometric Probability

We gave an example in the introduction, the Buffon needle problem, of the prob-
ability of a sort of geometric outcome; unfortunately, none of the techniques for
deriving probabilities discussed so far will help with it: It is in no sense a com-
binatorial probability. This particular problem is a bit hard to start with, so let us
first tackle an easier one.

Example. |throw darts at a simple dart board, which consists of a 10-inch circular
disk with a 3-inch circular disk called the bull's eye at its center (Figure 4.2). If a
dart does chance to hit the board, what is the probability that it will hit the bull's
eye?

To study this problem realistically, you would have to know a great deal about
my skill at darts. Fortunately, there is very little to know. | would be lucky to hit the
board at all; therefore, | am presumably just as likely to hit anywhere on the board,
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FIGURE 4.2. Dart board

if I do hit it. Intuitively, therefore, the chances of hitting a spot are proportional
to the size of the spot; the relatiaeea of the bull's eye to the area of the whole
board is the issue. So, using the familiar formula for the area of a circular disk, we
get P(bull’s eye|board)=2.257 /257 = 0.09.

In general, we see that events of interest on two-dimensional surfaces are usuall;
regions that we think of as possessanga. Similarly, events in three-dimensional
space are usually regions that possedsime. (What is the probability that a
surface-to-air missile will explode in a certain volume of space?) And even if you
do not usually think of one-dimensional problems, on lines, as being geometrical,
it seems reasonable to measure the size of a segmentl bygtis:

Example. My pocket calculator has a command on it called Ran#, or something
like it, that produces an unpredictable nine-digit number somewhere between zerc
and one (most computer languages, spreadsheets, and mathematical and statistic
packages have something similar). If we think of this as the coordinate of arandom
point on the number line between zero and one, then its probabilities are intendec
to beuniform on the event (0,1). The probability the random number will fall in
the interval from 0.15 to 0.40 is then just the length of that interval, 0.25 (since the
denominator is 1, the length of the whole interval).

These are related ideas: lengths in one dimension, areas in two dimensions, vol
umesinthree dimensions, and in fact, hypervolumesin more than three dimensions
We call all of these concept®lume with respect to the appropriate dimensional
space, and write the volume of A as V(A) for an event A. Our dart board example
suggests one simple kind of probability assignment that is sometimes useful.

Definition. A geometric probability space isniform if given events A and B
such that O< V(B) < oo, probabilities are given by P(B) = V(A N B)/V(B)
whenever the numerator exists.

As in the darts example, this model applies to cases in which any point in B
seems as likely as any other.
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4.2.2 General Properties

Going back to our list of general properties of combinatorial probability in the
last chapter (see 3.4.3), we quickly check that to our delight, they all are equally
true for uniform geometric probabilities. The only modification we might make is
that where we had some set empty or not empty before, we now ask only that its
volume be zero or not zero.

Proposition (properties of uniform geometric probability).

() 0 <P(AB) < 1.
(i) 1fV(ANB)=0,thenP(AB) =0.
iy P(B|B) = 1.
(iv) P(AUBJIC) = P(A|C)+P(B—A|C),andif V(A NB) = 0, then P(AUB|C) =
P(AIC) + P(BIC).
(v) P(C—A|C)=1-P(A[C).
(vi) If V(A NC) # 0,P(ANBIC) = P(AIC)- P(BIANC).

You should use familiar properties of length, area, and volume that you learned
in geometry and in calculus to prove these facts. You can use the analogous proof
from Chapter 3 as models.

As similar as these are to properties of combinatorial probability, the one small
difference has interesting implications. An event on an interval does not now have
to be empty to have probability equal to zero: For example, a single point has
length zero, so its probability conditioned on the whole interval is zero. Thus
P{1/m = 0.318309886..}|(0, 1)) = 0; the chances that | will get one exact
number when | hit Ran# is vanishingly small. If | think | have hit it, there is a very
good bet that if | measure my answer to another few decimal places of accuracy,
I will find I just barely missed. Nevertheless, | could conceivably hit that number.
So in this version of probability, “impossible” and “zero probability” have subtly
different meanings.

In fact, sets do not have to be small to have zero volume and therefore zero
probability. Consider a square dart board C and an interval B that cuts across it
Figure 4.3. Since this is a problem in two dimensions, probability is in terms of
area; and the area of that segment B is zero. Therefore, even though B is mucl

7\

B

FIGURE 4.3. A line interval inside a square
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more than a single point, it must still be that (B = 0. If you think that your
dart has hit B, it is almost certain that if you looked a little closer, you would see
that you have hit just to one side or another of the line segment.

4.3 Algebra of Events

4.3.1 What Isan event?

Now we know that probability may be usefully applied both to counting problems
and to geometrical problems, and have remarkably similar properties in these very
different situations. We are inspired to talk about a general concept of probability,
in which our two types so far would be only two special cases among many.

As before, we will be interested in probabilities efents, which will still be
sets of individuabutcomes. In combinatorial probability, any finite set at all was
a plausible candidate to be an event, even if it is hard to imagine why we would
be interested in a particular set for a practical application. In uniform geometric
probability problems, it is obvious that only events that have volume (whether that
means length, area, ordinary volume, or whatever) are candidates to be events. |
advanced real analysis courses, you will discover that certain sets (though not an
you would be likely to guess) can never be assigned a volume, no matter how gooc
you are at computing volumes. These can never be events in geometric probability
problems. So each application of probability may require a different definition of
what constitutes an event.

We need to know when we have done a satisfactory job of defining the events
in a probability problem. Our strategy will be to write down some simple rules
for which other sets of outcomes ought to be events, if we know which ones we
certainly want.

For example, there might be two sorts of results of an experiment that we would
call successes; we could write them down as two collections A and B of successful
outcomes. If these are each to be events, we would also be interested in the event
simply succeeding. This event would be given in set theory b\BAthe outcomes
in either A or B or both. We will generalize this and insist that if you wish to study
any two events, their union must also be an event.

If B is the possible outcomes of a certain experiment and A is the event of
succeeding at that experiment, then surelgiling at the same experiment is also
an event of interest. In set notation-BA = {x € B andx € A}, the set of failing
outcomes. We shall insist generally that if A and B are any events, thei\Bs
an event as well.

4.3.2 Rulesfor Combining Events
To summarize our requirements:

Definition. An algebra of eventsis a nonempty collection of events such that
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(i) if A and B are events, then A B is also an event (unions); and
(ii) if Aand B are events, B- A is also an event (complements).

From now on, we will expect the collections of events to which we assign
probabilities to be algebras. You might be surprised that we have not required the
presence of certain other events, such as intersections, that we talked about whe
computing equally likely probabilities. It turns out that the two requirements given
are enough.

Proposition. (i) ¢ (the empty set) isan event; and
(ii) if A and B are events, then A N B isalso an event.

Proor. (i) B — B = ¢ is an event; (ii) exercise. O

Notice that already we have one easy example of an algebra. When we did
combinatorial probability, we had a finite list of all possible outcomes. The events
includedany subset of that list. But the rules for an algebra just insist on a minimum
collection of events, and since we are using all possible subsets of that list as event:
it must be an algebra.

When we do uniform geometric probability, we start with the biggest event
in which we may be interested U, which must have finite volume in whatever
dimension we are working, & V(U) < oo. (Think of a dart board.) Now, |
will propose an algebra whose events are all the subsets of U that have a volumg
(possibly 0). Then it is plausible that for two events A and B that each have a
volume, AU B and B— A will also have a volume (for one thing, we know
immediately that they can be no bigger than V(U)). We will come back to this
issue later in the chapter, when we will describe more carefully the algebra needec
for geometrical probability.

4.4 Probability

441 InGeneral

Now we will try to say what all sorts of probability should be like, guided by our
experience with combinatorial and uniform geometric probability. These share
a common intuition that the probability of a future event is something like the
proportion of times we might reasonably expect it to happen if we did the same
experiment many times. Certainly, then, we should have an addition rule of some
sort—for example, the proportions of the time one event or another would happen,
if they cannot both happen, must surely just add. Surely, too, there must always be
a multiplication rule:

Example. What is the probability that an entire weekend will be rained out in
September, precluding a picnic? The weather service is unlikely to have this ques-
tion already answered, but they might be able to tell us that the probability of a
rainy day is 20% this time of year. With further research, they might tell us that on
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a typical rainy day, the probability that rain will recur the next day is 50% (because
many storms last longer than a day). Our answer is the probability that it will rain
Saturday, and then also the next day; which will come about 50% of 20% of the
time, or 10% of the time.

This just uses the familiar principle that proportions of proportions simply
multiply. So general probability theory will be founded on those two requirements.

4.4.2 Axioms of Probability

The two requirements from the last section will be the most important statements
in an axiom system for probability; their purpose is to summarize the general
features we will look for in any possible application of probability theory. This
approach was first popularized by the Russian mathematician Kolmogorov in the
1930s (though our choice of axioms is somewhat different from his). The axioms
are contained in the following:

Definition. A (finitely additive) probability space is an algebra of events, to-
gether with a real-number-valued function P defined on pairs of events with
B # ¢ such that

(i) P(A|B) = 0 (nonnegativity);
(i) P(B|B) # 0 (nontriviality); under a condition C,
(iii) P(A UBJ|C) = P(A|C) + P(B — A|C) (additivity); and
(iv) P(ANB|C) = P(AIC)- P(BIA N C) whenever AN C # ¢ (multiplicativity).

Comments: Our motivating examples of probabilities are proportions, which are
certainly never negative; therefore, | cannot imagine what a negative probability
would mean, and | put in rule (i). Rule (i), certainly true in our examples, is a
simple device to make sure that there smee positive probabilities; a probability
system that is always zero, and so completely useless, meets all the other rules
The last two are just our addition and multiplication computing rules.

You may have seen in other books what are calismbnditional probabilities,
written something like P(A). As mentioned in the last chapter (see 3.2.1), this
is simply a shorthand notation for our usual P84 whenever you feel free to
assume that your audience knows which condition B is meant. When discussing
dart throwing, we felt free to assume that a common general condition would be
that you have hit somewhere on the dart board. Now let us see what the shorthan
does to the appearance of our axiom (iv) when we assume that everybody is awar
of the general condition C : P(A B) = P(A) - P(B|A). You have to remember
that a subtle convention is hidden here. Not only have we written P(A) fof®(A
and P(An B) for P(A N B|C); we have also written P(B|A) for P(B N C). The
only way you can tell about that last substitution is to see that it appears in the
same formula as the unconditional probabilities. Nevertheless, many people find
this simplified form easier to remember.

The shorthand form of the axiom of additivity is P(AB) = P(A)+ P(B— A).

You may find that it helps you remember the two axioms to notice the remarkably
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parallel form they take. Interchangeandn, addition and multiplication, ang
and|, and you find that one axiom has been transformed into the other.

While we are at it, let us solve for the second factor in the axiom of
multiplicativity to get a famous formula.

Proposition (conditioning). If P(A) # 0, then P(BIA) = Pé,A(Q)B), where all
probabilities are with respect to a common condition.

In older texts, this is sometimes used as the definition of a conditional probability.
We will use it whenever we want to introduce a new condition, because we have
learned something relevant to the question.

Example. Your ornithology group is capturing and attaching location finders to
predatory birds in a large wildlife preserve. Only 25% of the birds you catch
are eagles, and only 6% of the birds are golden eagles, which you are studying
Your colleague Susan, who is surveying eagles in general, comes running in anc
announces “We caught an eagle today!” What is the probability that it is a golden

eagle?
We calculate P(goldéeagle)= %‘;ﬂlﬁz 908 = 0.24.

4.4.3 Conseguences of the Axioms

You may be wondering where all those common properties of combinatorial and
uniform geometrical probabilities went to. Axioms are supposed to be short lists of
the most critical properties; so now let us check that our list is long enough. With
a little ingenuity, we can extract from our axioms all the other usual properties of
probability.

Let A O B so that every outcome from B is also in A. Then we know that
A N B = B. Calculate

P(B|B) = P(AN B|B) = P(AIB) - P(BIA N B) = P(A|B) - P(B|B),

where the second equality just uses axiom (iv). Axiom (ii) says thatB)(& O,
so we can divide the first and last terms of the equality by it:

Proposition. (i) P(A|B) = 1 whenever A D B.
(i) P(B|B) = 1 (because B > B)

The second fact is often given as an alternative to our axiom (ii).

If we know the probability that something will happen, what is the probability
that it will not happen, that is, P(B A|B)? We know what the answer should be
from combinatorial probability; in fact, when we solved this problem in (3.4.3),
we used only additivity and the proposition above. Therefore, itis true for all kinds
of probability. We summarize our results as follows:

Proposition. (i) P(B— A|B) = 1 — P(A|B).
(ii) AlwaysP(A|B) < 1.
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The first result says, for example, that the probability of success with an ex-
periment is one minus the probability of failure. You should check (ii) as an
exercise.

4.5 Discrete Probability

45.1 Definition

So far, we have nothing new, and our purpose in writing down the axioms was to
allow for new applications of probability theory. The weather forecasting example
in the introduction suggests another sort of model: Tomorrow’s weather consists of
two outcomes, rainand dry (¥ {r, d}). We assign somehow (in this case, by expert
opinion), P[{A4|T] = 0.2. The previous proposition shows tha{®]T] = 0.8;

this is all we need to say about the probabilities in this situation. To summarize,
we want a type of probability space that consists of a complete list of possible
outcomes and such that we have some way of assigning a positive probability to
each. We will want all of these probabilities to sum to one, by our addition rule for
probabilities and the fact that P(All) = 1.

Sometimes we will need to say even more. Imagine an outcome to be the num-
ber of Atlantic hurricanes during the next season. The possible outcomes are
{0,1,2, 3,...}, the nonnegative integers. | know of no natural law that places
an upper limit on this number (certainly not 26, the available first letters for the
annual names list), so even though | do not take seriously the possibility of a mil-
lion hurricanes, | include all these integers among my outcomes. Now, the case of
exactly three hurricanes is an event of interest, wrigBnMight | also be curious
(do not ask why) about the probability of aadd number of hurricanes? If so,
that event could be writtefd, 3,5, ...,2 — 1, .. .}. (We are now certainly not
in the world of equally likely probability. We do not know how to do arithmetic
with infinite counts.) We need some restriction on the sizes of such collections of
outcomes:

Definition. A countable collection is one whose elements can be numbered, that
is, can have a different positive integer assigned to each.

Example. Any finite collection is countable, since you can just write down the
assigned numbergAq, Ay, Az, Asl.

Example. For an infinite collection like the odd positive integers, we will need

a rule for numbering the elements, since we would fail to finish numbering them
by hand before our species becomes extinct. Notice that 1 is the first odd number
3 is the second, 5 is the third, and by a leap of ingeniitg, the ¢ + 1)/2 odd
number. For example, 1793 is the 897th odd number. We can number them all, sc
our collection is countable.

Let us formalize this sort of probability space:



124 4. Other Probability Models

Definition. A discrete probability space consists of a countable event W;},
the algebra consisting of all subsets of U, numhegrs- 0 associated with each
outcomey; suchthad ", p; = 1, and probabilitesP(lB) = >, ag Pi/ D icB Pi-

The idea is that P({}|U) = p;; the general probability formula was inspired
by the proposition on conditioning. To see that this special, but important, concept
is consistent with what has gone before, we need to see that it is consistent with
our axioms.

452 Examples
Proposition. Any discrete probability space is also a probability space.
Proor. Check the axioms:

(i) P(A|B) > 0 because neither numerator nor denominator is ever negative;
(i) P(BIB) = } ;cgng Pi/> ice Pi = 1 # 0 because B is not allowed to be

empty;
(iif) The secret of verifying this axiom is to be unafraid of our complicated
notation:
P(AUBIC) = Z.x,-e(AUB)ﬂC pPj
Zx,EC Dj
Zx Pj + Zxr — Pj
_ £xean0) Pj sel@-Anc) Pi P(AIC)+ P(B— A|C),
ZXjGC Dj

where the first equality just uses the definition, and the second works because A
and B— A do not have any outcomes in common. Finally, split the fraction in two,
and we are done.

(iv) Exercise. When you have done it, our proof will be complete. O

You should check, as an easy exercise, that equally likely (combinatorial)
probability (where the events are any subsets of some finite set of outcomes
and probabilities are gotten by counting outcomes) is an example of a discrete
probability space.

The shorthand notation is particularly useful with discrete probabilities, if your
audience agrees in advance on the complete list of outcomes U (for Universe).
Then, almost always, P(A> P(A|U). But notice that

P(AlU) = D icanu Pi _ Ziei‘-\ Pi _ Zpi;
Y icu Di ieA

we have learned the following fact:

Proposition. P(A) =Y., pi.

Of course, we intended this to be true when we first defined discrete probability.
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Example. In the example of the number of hurricanes in a season, we had U
{0,1,2,...}. 1 do not know enough meteorology to assign realistic probabilities
to the various numbers of hurricanes; but let me propose the following simple
rule: PO} = p1 = 3, P(1}) = p» = 1, P(2})) = ps = %, and generally
P((i}) = pi+1 = 27'. Since we have assigned all outcomes a positive probability,
then we will have a discrete probability space if only the grand total is right:
> pi = 3+ 1+ 3%+ This infinite series is one of a very important class,
called geometric series; it will be useful, now and later, to recall from calculus
how to sum it

Proposition. Y a-r' =a+a-r4+a-r?+---=a/(1—r) whenever |r| < 1.

You can see why this ought to be the right sum by multiplying both sides by
1 — r. Our series is of this form i = % andr = % so that the sum of all our
probabilities is} /(1 — 3) = 1, as it should be.

Now we may do various calculations with hurricane probabilities. For example,

1 1 1
P(odd number}y= P(1)+ P(3)+--- = 2 + 16 + 64+ e
This is another geometric series, with= ;11 andr = ;11; so the probability of an
odd number of hurricanes is, peculiarly enouéh,

Now you can see why we restricted our attention to countable collections of
outcomes (yes, there are bigger sets, which you may study in classes in real ana
ysis). We learned in calculus how to sum certain infinite series, which just involve
adding up a countable sequence of terms. This is just what we needed to do in thi
example.

4.6 Partitions and Bayes’s Theorem

4.6.1 Partitions

Now that we have a richer variety of examples of probability spaces, we can show
off some more powerful computing tools. One important idea is that when we want
the probability of an event under complex conditions, it may be useful to split the

conditions into simpler special cases.

Example. What proportion of undergraduates at a certain college might be ex-
pected to drop out in a given year? Well, the situation is presumably different for
freshmen, sophomores, juniors, and seniors; the youngest students presumably a
less committed, and more likely to quit. Furthermore, they have different advisors,
who have completely separate data bases of information about the different years
You find that 30% of freshmen, 15% of sophomores, 10% of juniors, and 8% of
seniors drop out each year; presumably the answer is some sort of average of thes
But it cannot be a simple average, because presumably there are more freshme
than there are students in any of the other classes, so the 30% who dropout reg
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resent proportionally more students. You go to the registrar and find that of all
undergraduates, 35% are freshmen, 25% are sophomores, 20% are juniors, ar
20% are seniors. Now you can reason as follows: 30% of 35% of students, or
10.5%, are freshman dropouts (using the intuition behind our multiplication law).
Now sum the proportion of dropouts over all classes:

0.3x0.354+0.15x 0.25+ 0.1 x 0.2+ 0.08 x 0.2 = 0.1785

We state this as aresultin probability: If you pick an arbitrary studentin September,
the probability that he or she will drop out by the end of the year is 0.1785.

We need to formalize this idea of dividing the condition into special cases.

Definition. A (finite) partition of an event B is a finite collection of ever{S; }
such that

(i) C;NC; =¢fori # j (mutually exclusive).

(i) UC; =B (exhaustive).

The notation in (ii) just says to take the union over all valuesjpit is a
relative of summation notation. A Venn diagram should make this definition easy
to remember (Figure 4.4):

Example. (1) Freshman, sophomore, junior, senior is a partition of undergradu-
ates.

(2) Male, female is a partition of people.

(3) Given Ac B, then{A, B — A} is a partition of B (exercise).

4.6.2 Divisioninto Cases
Partitions are useful because we can sum probabilities over them.

Proposition (finite additivity). Given a finite collection of events {A;} that are
mutually exclusive, A; NA; = ¢ for i # j, PUA;) = 3, P(A;), where the
J

probabilities are taken with respect to a common condition.

Proor. We showed in (3.4.3) that for any two mutually exclusive events (in
shorthand), P(AJ B) = P(A) + P(B), as a direct consequence of the additivity

e N B

c, C, C, C,

FIGURE 4.4. A partition
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- N\ B

FIGURE 4.5. Division into cases

axiom. Repeat this, taking the union with one additional event at a time, until you
have the union of the entire collection (as mathematicians say, by induction).

Now let us see what a partition can tell us about a probability:
P(A|B) = P(ANBI|B)
(which you should verify, as an exercise)
= P[AN (UC)[B] = P[UA N C))|B]

using a famous identity from set theory, which you should check for yourself.

Therefore, P(AB) = ), P(ANC;|B) by the proposition of finite additivity (see
Figure 4.5). So a partition does indeed allow us to break up a probability as a sum.
But

P(ANC;|B) = P(G|B) - P(AIC; N B) = P(G|B) - P(AIC;)
from the multiplicative axiom. Let us summarize:

Theorem (division into cases). Let {C;} be afinite partition of B. Then
P(AIB) = ) "P(G|B) - P(AC)).

Note that our calculation of the dropout probability took this form.

Example. A city is thought to have about 1% of its population carrying the HIV
virus, which is believed to cause the deadly AIDS syndrome. There exists a good
inexpensive blood test for the HIV virus whose performance may be summarized
as follows:

(i) If a patient does have HIV, 90% of the time the test will say so; and
(i) If a patient does not have HIV, 96% of the time the test will say so.

The number in (i) is called theensitivity of a test; the number in (ii) is called
the specificity of the test. In practice, they will not both be 100%. Usually, there is
a trade-off; the more sensitive a test is, the less specific, and vice versa.

What is the probability that a randomly chosen person from this city will test
positive for HIV? Our partition formula will work here: Let C be residents of the
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city, H be those who have HIV, and D be those who do not. THé¢D} is a
partition of C. Let T be the event of testing positive for HIV. Then we want

P(T|C) = P(HIC) - P(T|H) -+ P(D|C) - P(T|D) = 0.01- 0.9 + 0.99- 0.04
— 0.0486.

Not quite 5% of our patients will test positive.

4.6.3 Bayes's Theorem

You may find the result above rather disturbing, if you imagine that a program
to test everybody in the city for HIV would be a good idea. You would get far
more positives than you had HIV patients and run the risk of scaring many healthy
patients to death. To further quantify this difficulty, we might ask; What is the
probability that someone who tests positive actually has the virus? In symbols, we
want P(HT). Notice that this is the reverse conditional probability of the|P§T
that we were given; is there a way to exchange the roles of event of interest anc
condition?

Let E, F, G be events, and compute fF{R G) = P(EN F|G)/P(BG) using
our formula for introducing a condition. The event that E and F happen is just the
event that F and E happen, so long as we treat events as sets, sifkce ENE.
Then

P(ENFIG) P(FNE|G) P(HG)P(BFNG)
P(EG)  P@EG) P(EG)
by another use of the multiplication axiom. But notice that G was a common

condition in every probability in this formula; so it is natural to use shorthand and
leave it out. We have proved a famous fact:

Theorem (Bayes's theorem). P(HE) = P(F)P(BF)/P(E)whenever P(E) # 0,
where all probabilities are with respect to a common condition.

This is attributed to Thomas Bayes, an eighteenth-century Presbyterian minister
(His example was a problem in the game of billiards.)

In our AIDS example, we notice that we have already computed the quantities
we need. P(HTI) = (0.01- 0.9)/0.0486 = 0.185. Fewer than 20% of the people
positive on our test really have HIV.

This seems to suggest that the blood test described, which we thought was ¢
good one, is really terrible. But that is not entirely fair; notice that at one time we
thought that the chances a patient would have HIV was 1%. After the same patient
is positive on the test, the chances leap to 18.5%, or almost 20 times greater. As al
exercise, calculate the probability that the patient has HIV after testing negative
on the blood test. You will find that it is many times smaller than before. If our
goal was to screen out a high-risk group from among, for example, blood donors,
it seems that the test could be very useful indeed.
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This illustrates an important style of statistical reasoning, c&mesian infer-
ence. We start with some state of knowledge about some important question (new
patient has probability 0.01 of having HIV). We perform an experiment (give the
blood test) that is relevant to the question, in the sense that the probabilities of var-
ious events are different for different answers to the question. We then use Bayes
theorem to compute new probabilities for the possible answers to the question (&
patient positive on the blood test has probability 0.185 of having HIV). Good ex-
periments can make us ever more confident, though never quite certain, of the truth
The probabilities we knew before the experiment are cagiléar probabilities;
those we compute after the experiment are caitastierior probabilities.

4.6.4 Bayes's Theorem Applied to Partitions

When we calculated the probability in our example using Bayes'’s theorem, we
found that both numerator and denominator were quantities that had appeared i
our division into cases theorem for probabilities. This suggests that we might use
Bayes'’s theorem to find the probability of one of the partition eventsrce the
event of interest has happened:

P(GIB)P(AICiNB)  P(GIB)P(AIC)

P(GIANB) = PAB) X, P(GIB)-PAIC)’

where the first equality is Bayes’s theorem, and the second just uses the partitior
theorem. As before, people often prefer the shorthand notation. The common
condition B does not appear in every term, but it is, in effect, there because the
{C;} are subsets of B. This is a nice enough formula that we mark it:

Theorem (Bayes's theorem for partitions).Let {C;} be a (finite) partition of an
event B, and A an event. Then if P(A) # 0, we have

P(G)P(AIC)
>, P(C)-P(AIC))’

where all probabilities share the common condition B = UC;.
J

P(GIA) =

| think of this case of Bayes'’s theorem as a sort of detective’s equation. Imagine
that the{C,} are the cases of various suspects being guilty of a crime, and A the
crime actually taking place. Then P(B) is the probability that suspectvould
commit such a crimenfotive), and P(AC;) the probability that were he to commit
such a crime, it would be the particular one being investigatpgdoftunity). So
now we see that when detectives evaluate their suspects for motive and opportunity
they should really multiply the two and compare the product to the corresponding
products for all the other suspects.
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4.7 Independence

47.1 Irrelevant Conditions

We exemplified the multiplicativity axiom in Chapter 3 (see 3.4.3) by choosing
two states without replacement for a survey and asking whether they were both
Atlantic states. How much did it matter that we drew without replacement? We
might instead draw one name from a jar, write down which state we got, put it back
inthe jar, stir up the names, and draw a second state (dvatveeplacement). How

has the probability of two Atlantic states changed? This is back to what we called
Urn Problem 1; the answer is 4/ = 15/50- 15/50= 0.09, which is slightly
larger than before. We once again interpret the product to mean something like
P(Atlantic|15 of 50)P(2nd Atlantjdst Atlantic and 15 of 50). But by putting the
first state back in the jar, we have made the jar equivalent to what it was before, anc
the probability that the second state is Atlantic is the same as the probability that
the first was. When, as in Chapter 1, we do an experiment repeatedly in hopes o
making our overall conclusion more accurate, we often work very hard to make sure
that each repetition of the experiment is unaffected by what happened in previous
runs. Here, we have done this by putting the removed state back in the jar. This is
an example of an important phenomenon in probability: Some conditions that you
may consider (previous experiments) may have no effect on the probability of a
certain event.

Definition. An event B isindependent of an event A relative to a condition C if
P(BIA N C) = P(B|C).

Example. Let B be the eventthatit rains tomorrow in Blacksburg, Virginia, and A
be the event that it rains later today in Athens, Greece. | cannotimagine much of a
connection over so short a period between two places so far apart; so | assume th:
B is independent of A. Under current conditions, using shorthand, | sapAPEB

P(B). If the weather report gives a 20% chance of rain tomorrow in Blacksburg,

| will not expect that to change if a few minutes later | hear on television that a
shower is falling on the Parthenon.

Our motivating problem was reduced to a rather simple multiplication by re-
placing a state, and thereby making our two choices independent. The general ide
is

P(ANB|C) = P(AIC)- P(BIANC) = P(A|C) - P(BIC)

by the multiplication axiom, if B is independent of A. We summarize, using
shorthand:

Proposition. If B isindependent of A relativeto C, thenP(ANB) = P(A)- P(B),
where all probabilities are relative to C.

Example. In the darts problem in Section 2, what is the probability that I will
hit the bull's eye 3 times in a row? | presume that a little practice will do me
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little good, so that each throw is independent of previous throws. Therefore,
P(3 bull's eyes|3 hits}= 0.09° = 0.000729. It will not happen very often.

Example. | hope to have a successful picnic on Labor Day or Memorial Day next
year. What is the probability that at least one of these days will be rainless? The
weather service says the probability of rain on Memorial Day is 20%, and on Labor
Day is 15%. They are so far apart in time that | presume that Labor Day rain is
independent of Memorial Day rain; so the probability of being rained out on both
daysis 02 x 0.15 = 0.03. My probability of success is therefore-D.03 = 0.97.

4.7.2 Symmetry of Independence

Notice that our product formula for independent events does not care whether B

is independent of A, or vice versa. In fact, when B is independent of A, we may

apply Bayes'’s theorem to check that

P(AP(BIA) _ P(A)P(B)
PB) ~ P(B)

where C is the common condition.

P(AIB) = = P(A),

Proposition. If B isindependent of A, then A isindependent of B, relative to the
same condition.

Because of this symmetry, we usually just say that A and B are independent
relative to C. If your audience knows the condition C, it is a common shorthand
not to mention it; we just say that A and B are independent of one another.

Example. A certain scholarship is given to a Tech junior each year, without re-
gard to gender. Yet for the past five years, it has gone to women. We learn that
42% of Tech juniors are women. If we imagine that the scholarship was given by
picking a student completely at random, what is the probability that the next five
recipients will also be women? Presumably, the annual choices are independent
so we simply use our multiplication result repeatedly: P(5 wofstudents)=

0.42° = 0.013069. | did not need to know how many juniors there were, even
though the number of people involved is known and finite.

4.7.3 Near-Independence

Example. Another scholarship is given to five Tech juniors each year, without
regard to gender. What is the probability all five will go to women this year? This
is a draw without replacement (nobody gets two scholarships), so independence
does not apply; we need to find out from the registrar that there are 4850 juniors,of
whom 2037 are women (exactly 42%). This is another finite population sampling
calculation, so

(2037  2037-2036- 2035- 2034- 2033

(4850}  4850- 4849. 4848- 4847- 4846
= 0.013032

P(5 wometb students)=
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Itis noteworthy that this answer and the answer to the last problem differ only in
the fourth decimal place. The reasonis easy to see; even after four people have bee
removed from the pool, the proportion of women that remaiﬁgﬁ = 0.4195,
which hardly differs from 42%. Thus, the calculations of the two answers are
practically the same. This is an example of the phenomenon we noticed in Chaptel
3.6, where sampling from a finite population was almost the same as sampling
from an infinite one. Apparently, sometimes we can get away with assuming that
we are doing draws with replacement (which lets us do the easy, independence
calculations) when we are in fact not replacing our draws. This presumably works
when the number of draws is small compared to the number of marbles in our urn,
S0 we are not changing the proportion of available choices much.

We can say something about when the number of draws is small enough. If we
drawk marbles from an urn withV whites andB blacks, then the probability of
getting all white marbles with and without replacement is approximately the same
when W), /(W + B), ~ W*/(W + B)*. This is true whenW¥);/W* ~ 1 and
(W + B)y/(W + B)* ~ 1. But we already know from the last chapter (see (3.5.3),
the birthday problem) when we can count on this to be true. Using the inequalities
established there; (/" —+1 < (W), /W* < ¢=()/W_ This says that the ratio is
practically 1 wher(}) is very small compared t& — k + 1, and therefore also to
W + B — k + 1 (which is obviously bigger). In our problem, we hdd = 2037
women andk = 5 scholarships, s@ = 10; so we are not surprised that the
approximation to the draw without replacement by the easier calculation of the
draw with replacement (assuming independence) was rather good.

4.8 More General Geometric Probabilities

4.8.1 Probability Density

Uniform geometric probabilities can sometimes help us solve more complicated
geometric probability problems.

Example. Onour circular dartboard (2.1), what s the probability for a dart falling
in a certain vertical strip? (See Figure 4.6.)

To make the math easier, center the board on the origin of a coordinate system
and let the board be of radius 1. Then our strip of interest is those points with
x-coordinates betweanandb. The total area of the board is now The parts of
the strip above and below theaxis have the same area, and the upper half of the
entire dart board is the area under the curve +/1 — x2, the equation for the unit
circle. Areas under a curve may be obtained by integration. Dividing by the total
area of the board, we get Rx betweeru andb} = fa" %«/1 — x2dx. This often
happens: A geometric probability can be expressed as the integral of a relatively
simple function, in this casjé\/l — x2, which we will call the probabilitydensity
of the x-coordinate. Here the density has a simple geometrical interpretation as
being proportional to the height of the strip above a giveNow we can reason
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FIGURE 4.6. A strip inside a circle

backwards, solving the integral (exercise) to get

1

P{x betweeru andb} = — [sinfl(b) +by1—b2—sin}a) —ay1— aZ] .
b4

For example, the probability of hitting between 60% to the left of center and 20%

to the left of center is B between— 0.6 and — 0.2} = 0.231.

Example (Great Wall of China problejn The Great Wall of China is a stone
wall 1500 miles long, but not very high. Imagine a guard standing before a long
straight and level stretch of the wall. He is very inebriated, so he shoots his rifle
completely at random. Occasionally, by chance, a bullet hits the wall. What are
the probabilities that it lands in various places along the wall?

Since the wall is very long but low, | will pay no attention to how high on the
wall the bullet lands; just to where horizontally. The first thing we notice is that
there are so many points along the wall the bullet could hit that the probability of
hitting any one point is negligible. The best we can do is figure the probability of
hitting in a stretch of wall, for instance, betweemndy (see Figure 4.7).

FIGURE 4.7. The Great Wall of China
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If the guard is shooting in random directions, it seems reasonable that the angle
6 within which he has to shoot to hit betweerandy is important. Let the point
on the wall opposite him have coordinaie let his distance to the wall h& and
measurex andy in the same coordinate systems:asThen some trigonometry
tells us thaty = tami(y — m)/d — tanm(x — m)/d. (Look at the triangles in
the diagram, and review the definition of the tangent.) Those angles that hit the
wall, starting from 0, range from-z /2 to /2. (In this book, angles are always
in radians.) If all angles seem equally likely, we should be looking at what portion
of the available angles we have includedgg¢r . That is,

tam(y — m)/d —tamX(x —m)/d

P(between: andy|hits wall) =
b g

For example, if the guard stands 10 feet from the wall, the probability that his next
bullet hole will be between = 10 andy = 20 feet to his right along the wall is
0.1024. This is an example of an important probability model, calledCdnehy
law.

Since our answer is expressed as the difference between two values of a functior
we can use the fundamental theorem of calcujiis) — g(a) =/, b g'(x)dx, tore-
write the Cauchy law. Remember from calculus tlitair(z))/dz =1/(1+ z2).
Therefore,

Y dz
7[(X+ {(z — m)/d)?)]

This may seem a peculiar thing to do, but notice that the expression under the
integral sign, thadensity again, does not involve the transcendental arc tangent
function. It is in a sense simpler when written this way. In the ease 0 and

d = 1, the Cauchy density function looks likdz) = 1/(7(1+z?)), and its graph
looks like the graph in Figure 4.8.

P(between: andy|hits wall) = /

0.3+

f

0.2+

0.14

Il
T T T
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FIGURE 4.8. The Cauchy density
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The shaded area is the probability that a bullet will hit between the poiaitsi
y along the wall if it hits the wall at all. We will discover later many other uses for
densities.

4.8.2 Sgma Algebrasand Borel Algebras*

It is time to tackle the problem of what sort of algebra of events we need for
geometric-based probability problems. This has become a more important ques
tion, because now we know how to tackle geometric problems whose probabilities
are not necessarily uniform. We will do it by analogy with how areas are found.

Remember that when studying probabilities of an outcome falling along a line,
we are usually interested in the probabilities of it fallingmtervals. These are,
after all, the sets whose lengths are easy to measure (an interbah@s length
b — a). So we need an algebra that incorporates our idea that we need events o
the line based on intervals. By custom, statisticians start building their events in
one dimension by insisting that all half-open intervals#] (which include the
pointb but excludez) are events.

But that may not be enough intervals to satisfy us. Is the entire e (c0)
an event? It would seem relevant in Cauchy probability spaces, for example. We
could build the line out of our half-open intervals in the following waysp, co) =
(-1,1]U(=2,2]U--- U (—k, k] U ---. That is, we combine bigger and bigger
intervals until, somewhere, every real number is included. Unfortunately, in our
definition of algebras of sets, we did not say that you necessarily included such ar
infinite, butcountable, union of events.

Furthermore, are single numbers, li#8, events in geometric probability prob-
lems? It seems silly not to include them; they have a known area (zero). Imagine
that the following (countably infinite) intersection is an event:

G-1,b0NnMB-3.blNGB—-3.b1N-(b—3.b]N---.

Obviously,b is in this event. Also obviously, any numher b is not in this event.
Now think about any number < b. Thenb — c is a positive number, and | can
always find an integet big enough that 1/n< b — ¢. So ¢ < b — 1/n, andc

is not in the interval (b— 1/n, b]. So c is not in the infinite intersection event.
We conclude thak must be the only point in that event. So we could argue that a
point is indeed an event, if onuntableintersections of events were necessarily
events.

The same approach may be used to assign probabilities on the plane. We sta
with events that are certaimectangles, because the definition of area starts with
that of a rectangle. Again, we conventionally start by declaring that all rectangles
(a, b] x (c, d] for any numbers < b andc < d are events (see Figure 4.9).

In p-dimensional space we include all hyper-rectangdés, (a;, b;]. (Can you
figure out this fancy notation?)

Then if we want to find the probability of an irregular area, we might partition
the conditioning event with a grid of rectangles. The dark line bounds an event of
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FIGURE 4.10. Approximating an irregular region

interest (Figure 4.10). The probability of the event of interest could then be cal-
culated rectangle by rectangle from the division-into-cases formula. Much more
easily, we can get bower limit on the probability by simply summing the proba-
bilities of those (darkly shaded) rectangles that are entirely within the event. Then
we can get anpper limit on the probability by summing the probabilities of those
rectangles (shaded at all) that intersect the event in any way. With ever smaller
rectangles, we could then pin down the probability as accurately as we wish. But
the lower limit corresponds to a countable union of an ever-growing combination
of rectangles, and the upper limit to an ever-shrinking countable intersection.
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We will decide that we always want to be able to do things like this, so we
strengthen our definition of an algebra from Section 3.2:

Definition. A o-algebra(sigmaalgebra) is an algebra of events such thagAf; }
is a countable collection of events, ther\; is also an event (countable unions).
1

Proposition. If {A;} isacountable collection of eventsinac-algebra, then (), A;
isalso an event.

You should check this as an exercise. This makes no difference to equally likely
probability spaces and to discrete probability spaces, of course. In those examples
all subsets of a large set were events, so we certainly radlgebra.

Now we are ready to apply this to real numbers.

Definition. The Borel algebra on the real line is the smallest-algebra that
contains all the intervals of the form (b].

By “smallest” we mean that there are no extra events; we have, of course, the
events that can be gotten by applyingdhalgebra rules (complements and unions)
to the half-open intervals. Furthermore, if we remove any events, either some of
them will be those we can build out of half-open intervals (which is bad) or we
will discover that we no longer have a sigma algebra.

Proposition.

(i) Anysingle point {b} isan event.
(i) (a,b),]a,b],and [a, b) are events.
(iif) Theentireline aswell asall possible half-lines ([a, 00), etc.) are events.

The point and the line we already took care of. The rest are exercises.

The last several paragraphs claim that to assign probabilities on the real line, all
we need to be able to do is assign probabilities to intervals. Thus, the formula we
derived for the hit probability for any stretch of the Great Wall of China potentially
tells us anything we want to know about hit probabilities.

Definition. The Borel algebra on the plane is the smaltestigebra that includes
the rectanglesa(, b] x (c, d] for any numbers: < b andc < d, and the Borel
algebra inp-dimensional space is the smallestlgebra that includes the hyper-
rectangles</_,(a;, b;].

So now our probability spaces whose outcomes are in several dimensions ca
potentially tell us how probable all sorts of irregular areas are.

4.8.3 Kolmogorov's Axiom*

When we restrict the idea of probability spacest@lgebras, does that have any

consequences for computing probabilities? Presumably, we must be able to cal
culate the probabilities for those new events imposed on us by the requirement of
countable unions and intersections. In each of our examples of a union in the las
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FIGURE 4.11. Polygons approximating a circle

section, we defined a growing sequence of eventsAA, C --- C Ay C ---
whose union was the event of interegtAk = B (see Figure 4.11). A common

notation for this union of a list of growing sets is lim., Ay = B.
Obviously, the probability of B should be the limit of the probabilities of the
events A.

Definition. Kolmogorov's axiom states that for a countable sequence of events
AL C A C A C A C -y P(L];JA;{IC> = P(lim_ o ALC) =
limy— 0o P(Ac|C).

Example. Let me check this for the probability of an odd number of hurricanes.
LetA; = {1}, A, = {1, 3}, Az = {1, 3, 5}, and so forth; this is clearly an increasing
sequence of sets. The limit of thg'Ais the event of an odd number of hurricanes.
From calculus, you might remind yourself about the sum déihide geometric
series; this says that PPA= (1 — (3)%)/(1 — (3)). Then lim P(A) = 1,
which matches our earlier result.

The new axiom is then obviously true for equally likely probability spaces,
because any union of events is only a union of a finite number of events. It is also
clearly true for discrete probability spaces: We find ourselves adding an always-
convergent countable sum of those probabiliiedn order to take any such limit.

Itis certainly true for uniform geometric probability problems: The axiom imitates
a valid way of computing areas of events by filling the region up from inside.
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We are now ready to amend the definition of a probability space to include
countable unions and a sensible rule for computing their probabilities:

Definition. A probability spacemeets conditions i—iv for a finitely additive prob-
ability space, and further the set of events foremalgebra and (vKolmogorov's
axiom holds.

All our theorems about probability in general are still true, because we have
only placed new restrictions on possible probability spaces.

The calculation in the example suggests that we may now be able to generalize
the proposition about finite additivity (see 6.2). Considenuntable collection of
eventgA;} that are mutually exclusive,MA; = ¢. LetB; = A1, B, = A1UA,,

k
and generally B = ‘L_JlAi. ThenB C B, C Bz C -+, and lim_, o By = UA,.

Finite additivity says that P(B = Zf‘:l P(A;), and so using Kolmogorov’'s axiom,
k 00
PUA)) = P(lim B;) = lim P(8,) = lim > PA) =D PA).
1 —> 0 -0 — 00 i—1 i—1

Proposition (countable additivity. Consider a countable collection of events
{A;} that are mutually exclusive, A; N A; = ¢. Then PUA;|C) = >_72; P(A/|C).

Now we can state more general versions of other things in Section 6. A countable
partition is just one with a countable list of events in it, and the theorem on division
into cases and Bayes'’s theorem for partitions are true as well for these countable
partitions.

You may well be wondering why we bothered to go back and require probability
spaces to be-algebras and to obey Kolmogorov’'s axiom. After all, each of the
types of probability we discussed—equally likely, discrete, geometric—already
meet these restrictions. The problem is that we can invent some finitely additive
probability spaces that do not. Imagine a probability space whose outcomes are al
the nonnegative integers, but where the events include only finite sets of integers
Define probability asin the equally likely case, by counting: A= |A N B|/|B|
when B is not empty. This space meets all axioms (i)—(iv), so we might imagine
that it is a perfectly reasonable probability space. However, the set of events is
obviously not as-algebra: We can piece together by countable union events with
aninfinitenumber of members and so cannot calculate probabilities involving them
from our definition.

Should this strange space be allowed to be a probability space? Probabilist:
are not in general agreement. Some would say yes, because mathematical us
have been found for it. Others point out that it is quite impossible to imagine any
experiment that would lead to these probabilities, even approximately—there are
just too many integers to have them all be equally likely. You may see both points
of view in advanced courses. We will choose to keep Kolmogorov’'s axiom for the
rest of this book, since we emphasize here experiments that one can actually carr
out.
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4.9 Summary

In this chapter we analyzed certain geometrical experiments, usifigrm ge-
ometric probability, which says that if the outcome is any point in a region, all
equally likely, then P(AB) = V(A N B)/V(B) (2.1). Then we gave general rules
for what sorts of setsvents in any probability problem must be: if A and B are
events, then so are A B and A— B. They will then belong to amlgebra of
events (3.2). Next we stated a short lisegfoms that all probability models must
follow; the ones that tell us how to calculate are R{B) = P(A) + P(B — A)
and P(An B) = P(A) - P(BJA) (4.2). Then we demonstrated new sorts of prob-
ability that meet our axioms, such dgscrete probability spaces. In this case,
P(A) = >_,.a pi» Where thep’s are probabilities of individual outcomes (5.2).
From these rules we extracted several useful formulas, such aslithe
vision into cases formula P(AB) = Y . P(G|B) - P(AIC;), where {C;}
partition B (6.2). Then we derived the famouwBayes's theorem P(G|A) =
P(Q)P(A|C,~)/Zj P(C)) - P(AIC;) (6.4). When certain conditions turned out to
be unimportant to the probability of an event, we concluded that the events must
be independent of each other, which simplified such calculations as P(B) =
P(A)-P(B) (7.1). Then we explored more general geometric probability problems,
which suggested the important idea of a probabdigsity, a functionf such that

b
P(outcome betweenandb) = / f(x)dx (8.1).

It turned out that geometrical probability problems required us to inveridhe
algebra of events, which essentially says that geometric events have length, area
or volume. These algebras aigma algebras, which include countable unions of
events (8.2), and we need an additional axigwmimogorov'saxiom, P(LkJ A;IC) =

lim;_ o P(A¢|C) whenever A C A, C --- C Ay C ---, to compute necessary
probabilities (8.3).

4.10 Exercises

=

. Prove the six properties of uniform geometrical probability.

2. List all the events that could conceivably be built out of the collection of
outcomeqdl, 2, 3,4, 5}.

3. Prove that if A and B are events, then B is also an event.

4. If {2, 3}, {3,4}, and{4, 5} are events in an algebra, prove (that is, convince
me, using only the definition) th&B, 4, 5} must also be an event in that same
algebra.

5. You are playing a game in which you toss two coins, and if thath land

heads, you win. A friend who is watching has a side bet with someone else

that she will win ifat least one of your coins lands heads. You toss the coins,
but they roll behind a chair. Your friend races ahead of you, looks behind the
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12.

13.

14.
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chair, sees both coins, and announces “l won!” What is now the probability
that you will win?

. Prove that P(A0 BN C|D) = P(AID) - P(BIA N D) - P(CA N B N D).
. Prove that the multiplication axiom P(A B|C) = P(A|C) - P(BJA N C)

whenever AN C # ¢ is always true for a discrete probability space.

. Prove that if you have an equally likely rule for probabilities on some set of

possible results C (that is, all probabilities are gotten by counting), then that
probability rule is also an example of a discrete probability space.

. Prove that if AcC B, then{A, B — A} is a partition of B.
10.
11.

Prove that always P(8) = P(AN B|B).

In the AIDS example (see Section 6.3), find the probability that a patient has
HIV, given that the patient has tested negative on the blood test.

As a safety officer in a chemical plant, you test the air once a day for very
small amounts of bS (hydrogen sulfide). You can tell how many of your
three vats are out of adjustment and so producing the gas, but not which ones
The old vat is out of adjustment 5% of the time, the year-old vat is out 10%
of the time, and the new vat is out 20% of the time. There is no connection
among the three vats.

a. Whatis the probability that exactly one vat is out of adjustment on a given
day?

b. This morning you detected the gas, enough to conclude that exactly one
of the vats is out of adjustment. What is the probability that the new vat is
at fault?

Five of the 23 people in your mechanics class are left-handed. A woman from
the dean'’s office wants to interview one of the left-handed students about how
well the left-handed desks in the room work.

a. Shetalks to people as they leave the class, until one of themis left-handed.
What is the probability she will have talked to more than six people?

b. Furthermore, seven of the 28 people in your electronics class are left-
handed. All you know is that the woman interviewed people in one of
the two classes, but she tells you that it took her 4 interviews to find her
left-hander. What is the probability it was the electronics class she was
talking to?

You ship off your motorcycle to be sold at a used motorcycle fair. Unfortu-
nately, you ship it at the last minute, on a standby basis. The shipper estimates
a 35% chance that it will get there in time for the Saturday show, a 41% chance
that it will arrive only in time for the Sunday show, and a 24% chance that
it will arrive too late for the fair. Your experience with this fair is that there

is a 28% chance that your motorcycle will sell on Saturday, if it has arrived.
There is only a 15% chance that it will sell on Sunday, if it is there to be sold
on Sunday.

a. What is the probability that you will sell your motorcycle?
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FIGURE 4.12. Exercise 15: Under a parabola

b. You get word that your motorcycle was not sold. What is the probability
that it arrived too late for the fair?

15. Let a random point be chosen uniformly on the unit squard)® (0, 1).
What is the probability the point will land under the parabple: x? ? (See
Figure 4.12))

16. Show that_‘fjl(l/(i +1),1/i] = (0, 1].
17. Prove thatTf{Ai} is a countable collection of events imaalgebra, them A;

is also an event.

18. Prove that in the Borel algebra on the real line, [hahd [a, b) are events.

19. Prove that in the Borel algebra on the real ling,d0), [a, 00), (—o0, b], and
(—o0, b) are events.

20. Prove that the entire plane is a Borel event. Prove that{) x (—oo, b] is
a Borel event.

21. Letrandom outcomes be uniformly distributed (just as likely to hit anywhere)
over the rectangle (@] x (0, 2], with coordinates of the hit poink( y) (see
Figure 4.13). Consider any vertical strip A with®a < x < b < 3 and
any horizontal strip B with O< ¢ < y < d < 2. Prove that the event of an
outcome in A is independent of the event of an outcome in B.

4.11 Supplementary Exercises

22. List all the events in the smallest algebra of sets that contains the events
{1,2,3}and{2, 3, 4)}.
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A

FIGURE 4.13. Exercise 21: Independent strips

Prove that for any events A and B (with a common condition),
P(A)+ P(B— A) = P(B)+ P(A — B).

You have a box with 8 nine-pin patch cords and 5 twelve-pin patch cords
mixed up in it. You remove two patch cords at random from the box.

a. What is the probability that the two cords will have the same number of
pins?

b. If, fortunately, your two cords do have the same number of pins, what is
the probability that they are nine-pin cords?

A company makes three nut mixes in very similar cans: One is all peanuts,
one is} cashews ang peanuts, and one &cashews ang peanuts. A friend
(who never looks at prices in the store) is equally likely to buy all three mixes.
One evening you go to her house, sit down on the sofa, and take a nut from
the can on the coffee table. It is a peanut.

What is the probability that the can is all peanuts?

Of middle-aged men who come to a clinic complaining of chest pain, 75%
have heartburn, 20% have angina, and 5% have had a mild heart attack (the
doctor records only the most important source of the pain. Other problems
are too rare to be significant). It is then usual to take an EKG, which records
heart activity. In 90% of heartburn cases, the EKG is normal. In 70% of
angina cases, itis also normal. However, in mild heart-attack cases, only 20%
of EKGs are within normal limits.

a. What is the probability that the next middle-aged male complaining of
chest pain will have a normal EKG?

b. A 50-year-old man arrives at the clinic, reporting chest pain. His EKG is
notablyabnormal. What is the probability that he has had a mild heart
attack?
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Horseshoe Bend

FIGURE 4.14. Exercise 30: Horseshoe Bend subdivision

27. The odds ratio is sometimes a useful way to write probabilities: If AAnd
are a partition of a general condition C, then defingA|B) = Eglggg. (As
shorthand, we writ@®c(A|C) = Oc(A).)

a. Write P@A|B N C) in terms of P(AB N C).

b. The odds form of Bayes’s theorem may be writ@g(A|B) = Oc(A) K,
where K, a ratio of probabilities, is called thBayes factor for the
observation B. Derive a simple expression forusing Bayes'’s theorem.

28. a. InExercise 26, compute the odds ratio that a 50-year-old man complaining

of chest pain has actually had a heart attack.

b. Find the Bayes factor (Exercise 27) provided by the knowledge that this
man has an abnormal EKG. Use it to compute the probability that he has
had a heart attack. Verify that your answer is consistent with the answer
to Exercise 26(b).

29. Let{B;} be a partition of C. Assume that for an event A that is a subset of C,
you know all probabilities P(f8;) and P(B|A). Derive a formula for P(AC)
that uses only these known probabilities.

30. You are shopping for a house. You read in the newspaper that a house is
available in Horseshoe Bend, a subdivision of a great many houses spreac
uniformly along a semicircular street off a very noisy freeway (Figure 4.14).
Obviously, the sites become more valuable as you move away from the noisy
freeway. The semicircle has radius one kilometer.

a. Find a formula for the probability that the house in the newspaper (which
may be anywhere in the subdivision) is betweesmdb kilometers from
the freeway (0< a < b < 1) as the crow flies (in a straight line).

b. Find the probability density for the distance of that house from the freeway.



CHAPTER 5

Discrete Random Variables I:
The Hypergeometric Process

5.1 Introduction

You will have gathered from the first two chapters that the usual grist for the
statistician’s mill is data, in particular, numerical data (and often lots of it). Yet
Chapters 3 and 4 wandered into the subject of probability, and even though many
of the examples were from the practice of statistics, the connection may have
been unclear. In this chapter we will study random experiments in which the
outcomes are numbers. In other words, we will develop probability models to try
to explain the variability in many sets of nhumerical scientific data. Quantitative
outcomes to probabilistic experiments will be calladdom variables, a concept

that pervades statistics. We will introduce some important families of interrelated
random variables that have been found to be good descriptions of the outcome:
of experiments. In this chapter we concentrate on families that arise in sampling
from finite populations of subjects.

Of course, the interest in having numerical data is that we may construct useful
arithmetic summaries. We will introduce the idea of the average value of a discrete
random variable, called axpectation. Very often, too, the goal of an experiment
will be to learn more about just which random variable best describes an exper-
iment. We will begin to develop methods tekting and estimation designed to
answer such questions.

Time to Review

Chapter 1, Section 7
Summing infinite series
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5.2 Random Variables

5.2.1 Some Smple Examples

Definition. A random variable is a probability space whose outcomes are real
numbers. Itssample space S is the collection of all possible outcomes of that
random variable.

Example. (1) If you poll 100 randomly chosen voters to discover their presidential
preference, one random variable of interest is the number who will say they support
your candidate. The sample space is the set of integers between 0 and 100 inclusiv

(2) Instudying a dangerous epidemic disease, doctors in an emergency room tak
the oraltemperature of each patientwho arrives. The temperature in degrees Celsit
of the next patient is a random variable, and its sample space might conceivably
be any real number higher thatr273 (absolute zero).

(3) There are 7 bird’s nests of the same species in a large tree. A biologist finds
a hatchling on the ground at the base of the tree. How many nests will she have tc
check to find where the hatchling came from?

In other textbooks you may encounter a more sophisticated definition of random
variable, in which the “sample space” is instead the set of all outcomes of an
experiment, and the random variable is then a real-number-valoetibn defined
on that set. These texts do this to be consistent with advanced graduate texts i
mathematical probability. Since the distinction makes no difference in how we use
the concept in this book (and very little difference in any case), we will use the
simpler definition. We will use capital italic letters likefor random variables; we
will think of the random variable as taking on a value as a result of the experiment,
which justifies notation like P( = x|A), wherex is one particular possible value
that we are curious about.

In the first two experiments, we would have to know a lot more to be able to
assign probabilities, but the third example is easy. PlEoahite marbles and a
single black marble in a jar and shake well. Remove one marble at a time, without
replacement, until you find the black marble. The number of white marbles you
have removed is a random variable, and its sample spdfelis2, ..., W}. All
the possibléypergeometric processes (see 3.3.3) are given by the case where the
black marble comes first, the case where it comes second, and so on to the cas
where it comes last. It is reasonable to assume that these cases are equally likel
and there ar@vV + 1 of them, so P(X= x|x € {0,..., W}) = ﬁ This is an
example of a uniform random variable:

Definition. A (discrete) uniform random variable is a random variable with finite
sample space, each of whose outcomes is equally likely.

Example ((3) cont.). The hatchling problem is equivalent to a hypergeometric
process with one black marble and 6 white marbles. The number of nests checke
without locating the right one is a discrete uniform random variable as in the
example above; the sample space is 0 to 6, and the probability of each Vélue is
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5.2.2 Discrete Random Variables

Of course, the various possible outcomes of an experiment need not be equall
likely.

Example. A chain of 10 dry-cleaning stores has been robbed repeatedly, so the
owner hires three security guards and hides them in three randomly chosen store:
If a robber tries to hold up a series of these stores, how many successes will he
have before a security guard interrupts his career? Assuming that he has no ide
where the guards are hidden, we calculate (let U mean Unguarded and G mea
Guarded)

3
P(X = 0) = P(first store guardedy P(G)= 10
P(X = 1) = P(first store unguarded, second guardeB(UG)
7 3
= P(U)- P(GIV) = 15" 5-
7 6 3
P(X = 2)=P(UUG)= P(U)- P(UU) - P(GUU) = 09 &

and so forth, until
7-6-5-4.3.2.1-3
10-9.8.7-6-5.4.3

Again, there is an urn model for problems like this. In an urn wWithwhite
marbles and black marbles, leX be the number of white marbles drawn without
replacement before the first black marble is encountered. In our exaWwipie7
andB = 3. GenerallyX is a random variable with sample spd€e. .., W}. The
calculations above become

w.-w-1)-----(W—-x+1)-B
(W+B)---(W+B—x+1)-(W+B—x)
_
(W + B)x+l ’

taking advantage of permutation notation.

PX =7)=

PX =x)=

With this random variable the probabilities of different numerical outcomes are
not all the same, so it is an example of a discrete random variable

Definition. A discreterandom variable is a discrete probability space (see 4.5.1)
whose universe U is a set of real numbers (so that the sample space of the randot
variable S is equal to U).

Any discrete uniform random variable is also a discrete random variable.
And in the example above of the number of white marbles found before the
first black marble is encountered, we found that {0,..., W} and that
pi = (W);/(W + B);1B. We think of p; as a function of the corresponding value
x; = i of the random variable.
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Definition. The probability mass function (or probability distribution func-
tion) of a discrete random variable jgx) = P(X = x).

Thereforep(x;) = p;.
Itis sometimes convenient to organize the facts about a discrete random variable
into a table:

X 0 1 2 3 4 5 6 7
p(x) | 0.3 ] 0.2333| 0.175| 0.125| 0.0833| 0.05 | 0.025| 0.0083

This is the Table for the laundry-guarding problem. These tables are traditionally
presented with the values ofin ascending order.

Proposition. (i) For all x € S, p(x) > 0: and
(i) X res P(x) = 1.

These assertions just restate the corresponding properties of discrete probabilit
spaces.

5.2.3 The Negative Hypergeometric Family

Our next, more general, type of discrete random variable will turn out to be one of
the most revealing, primarily because of its many ties to other variables.

Example. You have to get permission from your neighbors to build a fence around
the back yard of your new house. There are 12 households, and 5 of them havi
a family member on the neighborhood council. You need to talk to a majority of
those on the council, 3, in order to get permission. You have no idea where they
live. What is the probability that you will have to visit only 4 houses to talk to that
majority?

To model this problem, plac® white marbles an® black marbles in an urn.
Mix them up thoroughly and, then remove them one at a time without replacement
until you have removed black marbles (rather than just one, as in the preceding
example). Then our random variabtewill be the number of white marbles you
have happened to remove along the way. In the example, call the houses witt
a council member black marbles and those without, white marbles. Therefore,
W =7, B =5, and you must find = 3 of them.

Definition. A negative hypergeometric (or beta-binomial) random variable
N(W, B, b) arises when all possible sequencedtoft- B objects,W of the first
kind and B of the second kind, are equally likely. The random variables the
number of objects of the first kind that precede blie object of the second kind
in a given sequence.

Notice that we have described each of these variables with a notatignm (b)
that gives each of the key quantities that determines how it arises. We call the
negative hypergeometric variableamily, and the crucial numbers that tell you
which specific oneW, B, andb, are calledparameters. We already have two
examples of this family: In the discrete uniform case when we were searching
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X whites

e O8O OO

T

B — b blacks
b— 1 blacks bth black
FIGURE 5.1. A negative hypergeometric urn experiment

for a single black marble, the number of white marbles found along the way was
N(W, 1,1). When we were searching for the first black marble fréimwhite
ones and black ones, the number of white marbles found wa®@NB, 1). Any
collection of related random variables whose members we single out by numerical
indices will be a family.

The sample space of a negative hypergeometric random variable is obvious; nc
white marbles need precede diih black marble, or all of them may. Therefore,
S is the collection of integers in the range® X < W. Their probabilities
may be computed by noticing that there é‘i”g’g) equally likely hypergeometric
sequences (see 3.3.3). The ones that bavéhites before théth black may be
counted by noting that among the fisét- b — 1 marbles we must distributéwhite
marbles; the{ + X)th marble must be black, and among the st B — b — x
marbles we must distributé — X white marbles. (See Figure 5.1.)

Therefore, we have established the following:

Proposition. A negative hypergeometric N(W, B, b) randomvariable hassample
space S consisting of all integersintherange 0 < X < W and probability mass
function
x+b—1 —b—x
(I
(W+B)
w

P(X = x|W, B,b) = p(x) =

You should verify that when we were looking for one black marble, the probability
of each number of whites wag(@W + 1), by using this formula. Also verify that
when we are looking for the first a8 black marbles (b= 1), this big formula
reduces to the simpler formula we derived for that case.

Example (cont.). In the quorum-search problem the question is, if the number
of unsuccessful visits is negative hypergeometric, what is the probability of only
X = 1 misses?

3\ (8

(2)(6)

1
(7)
If the question is, how surprised should we be at so few unsuccessful visits, then we
really want to know the probability of 1 or 0 misseg0)+ p(1) = 1/22+7/66=

p(1)=

= 7/66= 0.106.
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0.152. This really was not all that surprising; if we get done that quickly, we were
only a little lucky.

524 Symmetry

Notice that we stop at thieth black marble of a complete row of black and white
marbles, which we have called the realization of a hypergeometric process (see
3.3.3). If we had laid out the same sequenceeirerse order, that same marble
would have been theB(— b + 1)st black marble from the end (the extra 1 appears
because the stopping marble gets counted from either direction). In getting to it,
we would have passed the othH&r— X white marbles. But the probability of such

a sequence is obviously exactly the same as the corresponding one in the origine
order (all sequences are equally likely). This lets us conclude a nice general fact:

Proposition (reversal symmetry).

P&IN(W, B, b)] = P[W — x|N(W, B, B — b + 1)].

In the quorum problem, this is nothing more amazing than noticing that the
probability of visiting one unnecessary house is exactly the samerat woisit-
ing 6 unnecessary houses. This is an examplesyfranetry in the family: Two
probabilities from two family members can be demonstrated to be the same. This
particular symmetry we will calleversal symmetry. If we are alert for these, they
can help us avoid duplicate calculations. In fact, if there is an odd number of black
marblesB, thenb = %*1 is the middle black marble; then= B — b + 1. We

have
B+1 B+1
P|:x|N (W, B, ;)] = P[W —x|N (W, B, ;)]

This is an example of a symmetry in a single random variable: The probabilities
are the same as you look through the table from either end.

5.3 Hypergeometric Variables

5.3.1 The Hypergeometric Family

Looking at the hypergeometric process in a different way suggests another sort o
random variable:

Example. Eight bottles of wine are submitted to two judges, who taste indepen-
dently. Judge C picks the best three bottles, and Judge D picks the best four bottles
Since your bottle never does very well, you form the opinion that their choices are
entirely capricious. If that is really so, what is the probability that their choices
would have two bottles in common?
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Imagine that Judge C surreptitiously puts a small white mark on the bottom
of his winners that Judge D will not notice. If their judgments are indeed entirely
capricious, then Judge D is picking his 4 at random and chanced to get two “white”
bottles.

We can construct an urn model for this that will turn out to have many appli-
cations. Placav white marbles and black marbles in an urn. Shake well and
then reach in without looking and remowxeamarbles, without replacement. Then
the unpredictable numbéf of white marbles you have removed is also a random
variable. In our examplely = 3 (C's winners),B = 5 (C’s losers), anad = 4
(D’s winners); since two bottles with a white mark are the outcome we have asked
about,X = 2.

Definition. A hypergeometric random variable with parameteié+ B, W, and

n is, given a set consisting d¥ elements of a first kind an® elements of a
second kind, the number of elements of the first kind appearing in a randomly
chosen subset of elements, where every such subset is equally likely. We write
H(W + B, W, n).

How does this differ from the negative hypergeometric problem? In both cases,
we remove the marbles from a jar in unpredictable order, stopping at some point
to count white marbles. In the former case, we stop when we have foblatk
marbles. In the new, hypergeometric, case, we stop when we have removed a tote
of n marbles. We will see shortly a connection between their probabilities as well.

We need to determine the sample space of our new random variable. Obviously
X > 0. But notice also that if is bigger thanB, we may run out of black marbles,
which places a higher minimum on the number of white marbles in our handful:
X > n — B. Inthe same way, obviousl¥ < n. But also there is a built-in limit
to the number of white marbles in the handfiil,< W. The sample space is the
collection of integers that meets all four requirements.

The probability of a given outcome is easy to calculate, because we have done i
before (see 3.4.1), the tea-tasting example). Ther@”afr@) equally likely subsets.
There arg(") ways to getr white marbles and,” ) ways to choose the black
marbles that make up the rest of your handful. We summarize these facts:

Proposition. For a hypergeometric H(W + B, W, n) random variable X:

(i) the sample space Sis the set of integers that meet max{0,n — B} < X <
min{n, W}: and

(i) the probability mass function is P(X = x|H(W + B, W,n)) = p(x)
(G2 (M)

The max function chooses the larger of the listed values (sikckas to be
bigger than both numbers); in the same waif) chooses the smaller.

Example (cont.). We can use this formula to solve the wine-judging problem
with W =3,B =5,n =4, andx = 2:

506 _3
P(X = 2|H(8,3,4)) = 2.2 _ 2
@ 7
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If the two judges do choose two (or more) bottles in common, that is little evidence
against your opinion that their choices are capricious. It would happen very often
just by accident.

5.3.2 More Symmetries

Notice that of theW + B — n marbles that get left behind in the jai — X

are white. But leaving marbles behind is just as good a way of selecting them as
removing them is, as we noticed in some of our sampling problems. We express
this as a formula:

Proposition. P[x|H(W + B, W, n)] = P[W — x|H(W + B, W, W + B — n)],

which is a fundamental symmetry of the hypergeometric family; this is another
instance of reversal symmetry. If temarbles we remove are exactly half the
marbles, then both sides describe the same random variable, which is therefor
symmetric.

The hypergeometric family has a completely different sort of symmetry, as well.
Our sampling process may be thought of as a cross-classification of the marbles
We are looking at all the possible ways of dividing the marbles into two groups,
white and black. We are also at the same time classifying all the marbles into the
two groups, sampled and unsampled:

White Black total
Sampled X n—x n
Unsampled | W—-X | B—n+X | W+B—n
total w B W+ B

Notice that in this way of looking at it, we might just as well have picked out
the ones to sample first, and which were to be painted white second. It is still the
probability of the same table, in which we happen to have interchanged rows and
columns, like taking the transpose of a matrix. We call thémspose symmetry

and state it precisely:

Proposition (transpose symmetry).
Plx|H(W + B, W, n)] = P[x[H(W + B, n, W)].

This corresponds to the obvious fact that in the wine-judging problem we could
just as well have had judge D go first and mark his winners with white paint; the
probability of what happened would still be the same, because the judges do nof
consult one another.

5.3.3 Fisher’s Test for Independence.

We illustrated transpose symmetry with a two-by-two contingency table to display
our results. You may remember from Chapter 1 that we were interested in models
for the counts in such tables, and you are no doubt curious about any connectior
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with hypergeometric experiments. Notice that the probability that any given mar-
ble appears in the sample/(W + B), is the same whether the marble is black

or white. Therefore, the hypergeometric experiment asstndegendence of the

two ways of classifying marbles: black—white and sampled—unsamplgdvHre
improbably large (or small), this would cast doubt on the appropriateness of the hy-
pergeometric random variable, and therefore on the assumption of independence
This is essentially how we reasoned in the wine-tasting example.

Example. Mann in 1981 reported a survey in which incidents of a person threat-
ening suicide by jumping from a tall building were recorded; it was noted whether
or not the threat occurred during the summer months, and whether or not there
was jeering or baiting of the subject by a crowd. A natural question was whether
or not summer weather was associated with baiting behavior.

Baiting None total

Summer 8 4 12
Other 2 7 9
total 10 11 21

We might reason as follows: If independence of the season and crowd behaviol
hold, then the results might have arisen by marking the 21 incidents as either
summer or other, then choosing 10 of those incidents completely at random to
have crowd baiting occur. Thek is the number of summer incidents at which
baiting happened, and it is an H(22, 10) variable. To check how improbable
our observation is, we compute the probability that there would have been 8
more summer incidents with baiting. (We would have been even more surprised at
the seasonal association if there had been 9 or 10 summer incidents):

P(X > 8) = p(8) + p(9) + p(10) = 0.0505+ 0.0056-+ 0.0002= .0563.

Our results were moderately improbable but could conceivably have arisen by
accident. We take this as some evidence that independence does not hold an
summer is associated with more baiting, but we would like a bigger survey in
order to be sure.

This style of analysis ofindependence models for two-by-two contingency tables
is calledFisher’s exact test. Transpose symmetry promises us that it does not
matter which we called the row classification and which we called the column.
You may have noticed that we used a peculiar line of reasoning. Those statistician:
whom we have callettequentists calculate the probabilities of various outcomes
before they do an experiment; afterward, they compare those probabilities to what
actually happened and come to conclusions. But in this example we calculated
our probabilities using as parameters the marginal totals 21, 12, and 10, which
of course we do not know until we do the experiment. It is as if we proceeded
instead to do the experiment, then had an assistant tell us only the marginal totals
We calculate the probabilities of various complete outcomes, then look up the
complete results and compare. Such a procedure is caitelitional inference,
because we calculate probabilities conditioned on partial information about the
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results. This is a bit controversial but is nevertheless plausible enough to be widely
accepted. There was no difficulty with the wine-tasting experiment, because the
marginal totals, the number of good bottles to be chosen by each judge, could be
specified in advance.

5.3.4 Hypothesis Testing

Each of our examples of frequentist reasoning has followed a pattern. We start with
a claim that might reasonably be made about how an experiment will work. This
is conventionally called theull hypothesis about that experiment, independence

of two ways of classifying is an important example. Then we look at the actual
result and calculate the probability that the observed value, or some value casting
even more doubt on the null hypothesis, would have happened. This probability is
traditionally called thegp-value for that hypothesis (in our suicide-baiting example

it was 0.0563). If it is disturbingly small, so that we are uncomfortable calling our
result an accident, we say that weect the null hypothesis, and we report our
experiment as evidence against it. In effect, the experimenter is saying that what
happened was too much of a coincidence to be believed.

Scientists do not like to leave it up to the judgment of the individual experi-
menter whether to call @-value disturbingly small. Conventions about when a
probability is small have been adopted by the scientific community; the single most
common one says that less than 0.05 will be generally accepted as fairly small.
As a practical consequence, this means that about one in every twenty publishe
sensible statistical experiments to test perfectly sound hypotheses will wrongly re-
ject those hypotheses. But scientists know that they will sometimes be wrong and
have decided to tolerate such error rates. The number 0.05 is caligrdfecance
level; if the p-value is less than that, we say that vegect the hypothesis at the
0.05 level of significance. If, as in our exampleis larger than 0.05, we simply
say that wdail to reject the null hypothesis.

The value 0.05 is, of course, quite arbitrary. More stringent communities of
scientists often demand significance levels of 0.01, or even 0.001. As we will see,
this means that we need ever bigger experiments to have any hope of detectin
deviations from hypotheses.

5.35 TheSgn Test

Now we can do a probability-based test of a simple contingency-table model from
Chapter 1. Can we test some of the models for measurements from the same place
Really satisfactory tests will have to wait quite a while, but it is possible to turn
certain questions into questions about contingency tables. For example, if we have
two levels of treatment and wish to decide whether they are really different, we
may reason as follows: Split the sample into those aboveatmple median (see
Exercise 1.17) of all measurements and those below the sample median. The resu
is a two-by-two contingency table.
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Example. Exercise 2 from Chapter 1 quoted 24 DBH levels of psychotic and
nonpsychotic patients collected by Sternberg. The sample median of the DBH
levels is between 0.0200 and 0.0204, so we get counts as in the following table:

below median above median total

psychotic 1 9 10
nonpsychotic 11 3 14
/bf total 12 12

(If there is an odd number of observations, use any rule of thumb to split them
unevenly.) Now, if there is no relationship between the two groups and the quan-
tity being measured, we may imagine that the observations have been arbitrarily
assigned to the above and below groups. Therefore, the random va¥igbthe
number in level 1 who chanced to be assigned to the below-median group, and it is
hypergeometric: H{(, n1, n/2). 1 am sure that you see where this is going: We do a
Fisher’s exact test for independence in our artificial 2-by-2 table. If independence
fails, the measurements may be concluded to be different between the two levels

Example (cont.). Letour significance level be 0.05, and ask whether the number
of psychotics with below-median DBH is surprisingly sma&l(X < 1) = p(0)+

p(1) = 0.00138. This is so improbable that we conclude that psychotics tend to
have higher DBH than nonpsychotics.

This procedure is called sign test for the difference of two groups of mea-
surements (because traditionally it is carried out by writingt-& rfext to each
above-median observation and-a)(hext to each below-median observation, as
an aid to counting them). It is usually classified asuak test, like those based on
the Kruskal-Wallis statistic (see 2.5.5). This is because we could have done it by
ranking the observations, then counting those above and below the middle rank.

The sign test has the advantage of other methods based on ranks that it is una
fected by peculiarities of the scale of measurement, such as miscalibration. It has
even more than the Kruskal-Wallis statistic, the disadvantage that it may waste &
great deal of information. A student would not be very well informed who knew
only that she scored above the middle of her class on an important exam.

5.4 The Cumulative Distribution Function

54.1 Some Properties

We often find ourselves computing not just the probability that we get a certain
value, but that as in the quorum search example weigebst a certain value.
Therefore, we have given this quantity a name.

Definition. Thecumulative distribution function F(x) of a random variabl&
is the probability that the variable will achieve at most the specified valtieat
is, F(x) = P(X < x).
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Example. For a discrete random variable, the cumulative distribution function
may be displayed as a third row in the table. Then it is a running (cumulative) total
of the probabilities in the second row. In the example of searching for a quorum,
we have the following table:

x 0 1 2 3 4 5 6 7
p(x) | 0.0455| 0.106 | 0.1591| 0.1894| 0.1894| 0.1591| 0.106 | 0.0455
F(x) | 0.0455| 0.1515| 0.3106| 0.5 0.6894 | 0.8485| 0.9545| 1.0

For example, the number(2) = 0.3106 in the third column is just.0455+
0.106+ 0.1591, the sum of the probabilities of getting 0, 1, and 2.

Computer statistical programs often provide commands that calculate the cu-
mulative distribution functions of important families of random variables. Notice
that the same table or function will answer questions about the probabiléty of
least some value:

P(atleast 8 incidentsy P(X > 8)=1-PX <7)=1- F(7).

Thus it is particularly handy for computingvalues, since there we want the sum
of the probabilities of our result and also more extreme results.

Example. In the hurricane problem, (see 4.520) = 1, p(1) = 1, p(2) = 3,
and so forth; s@'(0) = % FQ1) = %, andF(2) = %. As an exercise, show that for
anyx in the sample spacé(x) = 1 — 1/2*+1,

Example. In the N(W, B,1) cases, where we were looking for the first black
marble,F (x) is the probability that we get at mastwhite marbles. But that is the
same as the probability that we dot get at firstx + 1 or more white marbles in a
row. The probability ofc + 1 or more white marbles before the first black is just the
probability that the first 4+ 1 marbles are all white, which i$),+1/(W + B)y+1,

as you might remember from one of our first permutation problems. We conclude
that for this class of random variables,

_ (W)x+1
(W + B)x+l

As an exercise, compare this calculation to the running total in our table for the
laundry problem.

F(X)=1

5.4.2 Continuous Variables

In the last chapter we discussed probabilities of points on the real line; if such
points have coordinateumbers, then we have a random variable. In this case,
the cumulative distribution functiof’(x) = P(X < x) is the probability of an
outcome falling in the left half-line, which we required to be an event in the
Borel algebra. In the calculator-generated random number example (see 4.2.1)
F(x)=PX <x)=P0< X <x)=x—-—0=xwhen0< x < 1. This random
variable, whose outcomes are any numbers in an interval and not just a discrete
set, is our first example of@ntinuous random variable. Another is the following:
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FIGURE 5.2. Cauchy cumulative distribution function & 0, d = 1)

Example. Letarandom variabl& be the coordinate of a bullet hole in the Great

Wall of China problem in the last chapter (see 4.8.1). We found a formula for the

probability that a hole would fall in any interval, so we can do the same for the

half-infinite interval in the definition of the cumulative distribution function:
F(x)=P(X < x) =1+ 2 tan* =" since as the point on the wall goes off to

the left, to negative infinity, its arc tangent approacheg2. This function defines

the Cauchy family of random variables, with parameterndd (see Figure 5.2).

From the definition, we know that the height of this curve tells us the probability
that X falls to the left of the point.
We pointed out that many problems of this type hdeesities, in this case,

1
md(1+{(x —m)/d}?)

is the density function for the Cauchy family.

From the last chapter (see 4.8.1), remember that P(¢ < ¥ = fab f(X)dXx,
so the area under a piece of this curve gives us the probability that the variable
will fall in that interval along thex-axis. In the preceding example, we had the
relationship between the density and the cumulative distribution funét{eh =
ffoo f(X)dX. This is just the fundamental theorem of calculus, and so it holds
quite generally for continuous random variables with densities.

We can make some general claims about cumulative distribution functions,
which will hold both for discrete and for continuous random variables.

F'(x) = f(x) =

Proposition (properties of cumulative distribution functions).

() iMoo F(x) = 1.
(i) lim v —oo F(x) = 0.
(i) P(x <X <y)=F(@)— Fx).
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(iv) F isanondecreasing function of x.
(v) For discrete random variables with integer sample space, p(x) = F(x) —
F(x —1).

The proofs are exercises. We have established hereftlratrries with it all
the information we need for our most common types of random variables: Part
(iii) shows that we can assign probabilities to any element of the Borel algebra on
the real line (see 4.8.2), since we have taken care of all intervald.(Part (v)
shows that we can use the cumulative distribution function to assign probabilities
to any outcome for an integer-valued random variable. In the quorum-search table
0.1591= p(5) = F(5)— F(4) = 0.8485— 0.6894. As an exercise, you will show
how you could usé to find the probability mass function for a random variable
whose sample space was half-integers.

As you study more random variables, you may find yourself disappointed to
learn just how few families of useful random variables have nice mathematical
expressions for their cumulative distribution functions, as several of our examples
did. However, computer programs are widely available to compute a great many
of these families of functions when we need them.

54.3 Symmetry and Duality

The cumulative distribution function will now allow us to find a useful connection
between our deceptively similar families, hypergeometric and negative hypergeo-
metric random variables. Such a connection between the probabilities in different
families will be called aduality. Remember that the two families correspond to
two criteria for stopping a search through a realization of a hypergeometric process
(laying out a row of marbles on the table). Consider the statement that “at most
x white marbles were found by the time thth black marble was found”; this is
exactly the same condition as “at mést x marbles were found by the time the

bth black marble was found.” But this is the same as “at Ied&$ack marbles were
found in the firsth + x marbles,” which is the same as “at masivhite marbles
were found in the firsb 4+ x marbles.” You may have to think about this for a
while. The equations are as follows:

Theorem (positive—negative duality).

() F[x|N(W,B,b)] = F[x|H(W + B, W, b + x)].
@iy F[x|H(W + B, W,n)] = F[x|N(W, B,n — x)].

Figure 5.3 shows how the theorem works: Any sequence of black and white
marbles (bold path—‘up’ is a black marble, ‘rightward’ is a white marble) must
cross theb(blacks) line and thé + x(total marbles) line on the same side of the
x(whites) line. The second equation in the theorem just turns our sequence of
equivalent statements around.

We need only have one set of tables or one computer program for the
hypergeometric cumulative distribution function or only one for the negative hy-
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FIGURE 5.3. Positive—negative duality

pergeometric, not both. This is true even though the urn experiments, sample space
and probability mass functions are quite different.

Example. F[2|N(4, 3,2)] = p(0)+ p(1)+ p(2) = 5/35+8/35+9/35 = 22/35.
But F[2|H(7, 4, 4)] = p(1) + p(2) = 4/35+ 18/35= 22/35.

There is one more important change of perspective we can apply to hypergeo-
metric processes, which leads to useful symmetries in some of our families. What
happens if we paint the black marbles white and the white marbles black? Itis easy
to see the effect of this black—white transformation on the hypergeometric family:
We interchangéV andB, and find ourselves counting the black marbles, the ones
we did not count before, from our samplerofTherefore,

P[x|H(W + B, W, n)] = P[n — x|H(W + B, B, n)].

However, you should convince yourself as an exercise that we could have figurec
this out by multiple applications of the reversal and transpose symmetries, so tha
we have learned nothing very new.

The black—white transformation has more interesting consequences for the neg
ative hypergeometric family. Now the change of color interferes with our stopping
rule, because we were using the number of black marbles to decide when to quif
sampling. Instead, consider the cumulative distribution function. The event “at
mostx whites by thebth black” is identical to “the £ + 1)st white appears af-
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ter thebth black.” But this is the same as “more than- 1 blacks appear by
the(x + 1)st white.” Now we exchange black and white marbles, and notice that
this last statement refers to the complementary event to the one in a cumulative
distribution function:

Theorem (black—white symmetry).

F[xIN(W, B,b)] = 1— F[b — 1|N(B, W, x + 1)].

This gives a nonobvious relationship between the probabilities of events in very
different negative hypergeometric random variables; it will be increasingly useful
as we learn more.

Example. F[2|N(4, 3,2)] = p(0)+ p(1)+ p(2) = 5/35+8/35+9/35 = 22/35.
But1— F[1|N(3,4,3)] = 1— p(0) — p(1) = 1 — 4/35— 9/35= 22/35.

5.5 Expectations

55.1 Average Values

There must be some reason that we are interested in numerical outcomes fo
probabilistic experiments. Presumably, we want to be able to do various kinds of
arithmetic in order to learn more about the data.

Example. | might randomly choose one of four treatments (with replacement)
for each patient who enters a study. But these treatments have differing costs pe
week: $15, $28, $30, and $75. Therefore, the cost of continuing my experiment
is affected by chance; it could be very expensive or relatively cheap. Intuitively,
though, | believe that for a large number of patients, there is some sort of typical
cost that | might reasonably expect. The weekly cost of a patient is an example of
a discrete uniform random variable, with sample sgd&e28, 30, 75}. So we are
seeking some sort of typical value for that random variable.

If | assigned treatments many times (with replacement), | would presumably get
each one about equally often. My average costs per patient would then be just abot
the sample average of the possible prices for each treatmes2@4530+75) /4 =
$37. Therefore, it might be part of a sensible attitude in the long run to budget about
$37 per patient per week.

Later in the course we will learn something about when such a policy is indeed
sensible. But since it is at least plausible, we give it a name:

Definition. The expectation (or expected value) of a discrete uniform random
variable is the average of the outcomes. If the variab{g ige write the expectation
E(X).
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Since each outcome is equally likely, a simple average reflects the cost of an
assignment. In the special case of a negative hypergeometric random variable ir
which we were chasing the only black ball in the urn, all outcotfes.., W}
were equally likely. Therefore,

gy OFLF2E W ("3 w
B W+1 CW4+1 27

If we are searching for the one bad apple in a barrel of 10 apples, we will have
to check an average of 4.5 good apples to find it. Notice that the expected value
which is a fraction, need not be a possible value, which must be an integer.

5.5.2 Discrete Random Variables

This idea of expectation of arandom quantity promises to be useful enough that we
would like to apply it to more cases than just the equally likely one. In the general
negative hypergeometric case, we still have a discrete random variable, but all the
different outcomeg0, . .., W} are no longer equally likely, so our definition fails

to apply directly. But we remember that the variable was just a number of white
marbles up to a certain point in each of tﬁ\%f) equally likely sequences that
realize the process. So we can use the definition to compute

> _all sequencdnumber of whites byth black)

("w")

E(X) =

Now group together in the numerator the sequences in which we drew a given
numberx of white marbles:

w
Zx:O Zsequences withr whites bybth blackX
(W+B)
w
B Zf’zox - (number of sequences withwhites)
- ("5") ’
w

E(X) =

We have already computed the number of these sequences, so

Yo (UMY
(W+B)
w (x+b—l) (‘A;V-&-B—x—b) w
= Zx : (W+B‘;/7X = Z:Ox - px)

x=0 w

E(X) =

using our formula for the probability mass function. This last expression for the
expectation is easy to interpret: To find the expected value of a discrete random
variable, take aveighted average of its possible outcomes with the weights propor-
tional to how probable that outcome is. The more likely a result, the more influence
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it will have on the expectation. We would like to apply the formula generally, let-
ting E(X) = Y, x; p(x;) for any discrete random variable; we will do essentially
that.

If the probability mass function is given by a table, we can compute the expec-
tation by attaching a product row and summing it. In the quorum search problem,
we have the following table

X 0 1 2 3 4 5 6 7
p(x) 0.0455 | 0.106 | 0.1591 | 0.1894 | 0.1894 | 0.1591 | 0.106 | 0.0455| total
x p(x) 0 0.106 | 0.3182| 0.5682 | 0.7576 | 0.7955| 0.636 | 0.3185| 3.5

We come to the plausible conclusion that you must visit an average of 3.5
unnecessary houses to find the 3 people you need.

We must quibble a bit: If our discrete random variable has an infinite (but

countable) sample space (remember the hurricane count (see 4.5.1)7?), thento g
the expectation we have to sum an infinite series. We can often do that; but if
the outcomes include both positive and negative values, you may remember frorr
calculus that sometimes the sum depends oortther in which you sum the terms.
But if we think of the expectation as the average of a great many repetitions of
the random variable, we see that we are in effect summing our series in random
unpredictable, order. You will see an example of this phenomenon in your exercises
This is unsatisfactory, so we will require that it never happen.

Definition. A sum})_, g; is said to beabsolutely convergent if the positive and
negative terms may be summed separately; in that dase = >, oa +

Zu,-zo a;.

It should be obvious from the definition that if a series is absolutely convergent,
then it does not matter in what order you add the terms; you always get the same
answer. In that case, we can forget our quibbles and use our nice formula.

Definition. For a discrete random variablg&(X) = >_. x; p(x;) whenever the
series is absolutely convergent.

5.5.3 The Method of Indicators

Such calculations can get somewhat laborious as the number of discrete outcome
grows; we would like simpler expectation formulas, like the one we got in the
search for a single black marble. One other case is almost as easy: when there is
single white marble, and we draw until we find thil of B black marbles. Then

our negative hypergeometric random variable, the number of white marbles found,
can take on only two values: 1 if we find the marble, O if we do not. There are
exactlyB +1 equally likely realizations, according to where the white marble is. In

b of those cases (just before the first black, just before the secandiist before
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the bth) we will find the white marble; in the other cases, we will not. Therefore,

Lb+0(B+l—b)_0%l_ b V1. b b

B+1 B+1 B+1 B+1

E(X) =

Proposition. For X an N(1, B, b) randomvariable, E(X) = b/(B + 1).

Such a random variable with sample space only 0 and 1 is caBedhaulli(p)
variable, where the parametgiis the probability of getting a Ip = b/(B + 1).
Its expectation gives us the clue we need to find the expectation of a negative
hypergeometric random variable for any number of white marfieRemember
that deciding when to stop is entirely determined by the black marbles; we ignore
the white marbles until we have to count them at the end. Imagine that the white
marbles are numbered,= 1, ..., W; you askW friends to help you by each
keeping track of a different one of the white marbles. After you have rembved
black marbles, you ask each friend to tell you “how many” of his white marbles
have been removed along the way; he will tell you either 0 or 1. If he was looking
for the marble numbered then his answer (0 or 1) we might cal}. You add the
numbers from each of your friends to gét= X; + X, + - - - + Xy, the total of
white marbles removed. For example, the resyt@+0+1+14+0+0=3
says that the white marbles labeled 1, 4, and 5 appeared, and 2, 3, 6, and 7 did no
during the draw.

Each friend need pay no attention to any white marble except the one with his
number on it. Therefore, each of them is observingvdh, B, b) random variable
X;; the last proposition says th&(X;) = b/(B + 1). Each sequence a friend
observes corresponds to an equal number of equally likely sequences from the
original game (imagine the ways the other white balls may be scattered through
his sequence). Therefore, the expectation is just the sum of the expectations fo
each friend. There ar® friends, so we come to this conclusion:

Proposition. For X a negative hypergeometric N(W, B, b) random variable,
E(X)=Wb/(B +1).

For example, in the quorum search problem with= 7, B = 5, andb = 3,
we verify that indeed(X) = 7 x 3/6 = 3.5. You should check that this general
formula matches each of the other examples and special cases we have studied. Tf
method, in which we splitarandom variable up into simple, and usually equivalent,
random variablest = ), X; (often, but not always, eacki; is Bernoulli) and
then reason thak(X) = ), E(X;), is called themethod of indicators. We shall
give a general justification in a later chapter. As an exercise, you might use this
approach to find a simple formula for the expectation of a hypergeometric random
variable.
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5.6 Estimation and Confidence Bounds

5.6.1 Estimation

In our applications so far, we have assumed that we had a random variable tha
was a sensible model for some real experiment. This allowed us to compute the
probabilities of various outcomes. Then, if we were using the frequentist style of
reasoning, we could check whether the actual numerical outcomes were surpris
ingly unlikely; if they were, we had reason to doubt that the model (or at least the
claimed value of some parameter) really was appropriate.

As useful as this is, it has a disturbingly negative flavor; the only thing we seem
to be able to do is doubt some claim. In this section we will look at a common class
of problems, calleestimation problems, in which we want to actually learn the
unknown value of a parameter in some family of random variables. But estimating
a parameter value will raise a harder question: How accurate is our estimate? With
a bit of ingenuity, we will come up with a way to address this question using
frequentist hypothesis testing to get a partial solution, calleahfidence bound.

Example. Anichthyologist (who studies fish) tags 12 adult trout and returns them
to their lake. After a brief period to let the tagged fish recover and spread through
the lake, a fisherman sets out to fish the lake, and after catching 40 trout, hooks th
first tagged one. Does the fisherman’s experience tell the ichthyologist anything
useful about the total trout population?

We start by imagining that the fisherman’s experience is something like an
N(W, 12, 1) random variable, where he has obserkeg 40, andW, the untagged
trout population, is unknown. What would be a plausible estimat& ®fA naive
rule of thumb would be to guess th&tis something close to its average value;

and we know EX) = 375. Then just solve the equation ~ E(X) = 3% for W

to getW = 40 x 13 = 520 untagged trout.

Notice that we have carried over the hat notation from when we were estimating
parameters of a structural model for data, such as a regression line. This rule-
of-thumb estimate, which matches a random variable to its expected value, will
play the role that standard estimates played in Chapter 1. Much later in the book
you will see sounder general principles for estimating parameters of families of
random variables. In the meantime, the matching technique, calladethed of
moments, will be seen to work satisfactorily for a number of our favorite families.

At the moment, of course, we have no idea how good an estimateibis.

5.6.2 Compatibility with the Data

Can we say something more useful about the true valug ®ffFirst of all, we
know that it is at least 40, for obvious reasons. But we of course cannot place any
corresponding upper bound. There could have been a million trout out there, anc
the fisherman was just lucky to catch a tagged one so soon.
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Backing off a little from demanding such hard-edged knowledge (as statisticians
must always do), is it not true that some value®ofmake us seem rather absurdly
lucky? Let us try to see which valueswf are implausibly large. We will proceed,
using the frequentist style of reasoning, to ask when our observed vakiésof
improbablysmall, for a given large value oW. Of course, we would then find
smaller values than the observEdeven more unlikely, and so must include them
in the probability to be calculated. Fortunately, this probability model has a simple
expression for its cumulative distribution function:

(W)a1
PX=0,1,---,400W) = F(40)=1 W + 120,
For example, ifWw = 7000, ourp-value is 0.068. From the section on hypothesis
testing, even though this probability is a bit small, we fail to reject this population
size at the popular 0.05 significance level. NoW,= 14,000 hag-value 0.035;

SO we may reject this larger value. Using the 0.05 level, we tend to disbelieve a
trout population of 14,000 but will tolerate the suggestion of 7000.

Still, our conclusions seem more than a bit weak. Our doubts range over thou-
sands of different values &¥ . Worse, if we changed our significance level to, for
example, 0.01, our examples of values of W that we would barely reject or barely
accept would be in a very different range (exercise).

Now try for information about the compatibility of the fisherman’s experiment
with small trout populationd¥. We need to know for which values & an X of
40 fish (or more) is improbablharge:

(W)ao
P(X =40,41,---|W)=1— F(39)= W + 12
Trying outW = 200, we get g-value of .0754—a little unlikely to find 40 or so
untagged fish, but not to the traditional significance level. Nowiry= 150: The
p-value is 0.0289, and we are ready to reject the hypothesis that there are so fev
trout. Our information is much sharper; a substantial change in plausibility for a
moderate change in parameter value. After some more calculation, we narrow it
down to exactly when we start rejecting the proposed population siz& Ferl75

we computep = 0.0503, and foW = 174 we getp = 0.0494.

Finally, we are prepared to say something really useful to the ichthyologist: If
we use the 0.05 significance level, then we find our experimental result consisten
with any W > 175 untagged trout and inconsistent with any smaller values. (Ac-
tually, We have ducked one issue: We have not checked our statement for even
possible value oW. In an exercise you will remedy that oversight.) This limit
changes with significance level, but not nearly so radically as before. This could
be of real scientific usefulness in monitoring the trout population. Certainly it is a
clear improvement over our crude estimate, of unknown, and apparently very low,
accuracy that there are 520 untagged trout.
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5.6.3 Lower Confidence Bounds

The method we have devised is so widely useful that we give it a name.

Definition. Let a random variabl& be from a known family, one of whose pa-
rameter® is unknown. Assume that for all valués< 6, we find that the observed
value of X leads us to rejed at the significance level and that for alb > 6
we falil to reject. Then we say that; is a (1— «)% lower confidence bound for

0 (or thatd > 6, is truewith 100(1— «)% confidence).

For our example, we discovered that 175 was a 95% lower confidence bound
for the true number of untagged trout. As an easy exercise, you will write down
the definition for arupper confidence bounél.

I hope you are convinced from our example of the potential usefulness of confi-
dence bounds. Unfortunately, our justification for them, based on which hypotheses
we would reject or fail to reject, is subtle and rather hard to explain to scientists.
People keep trying to say simpler things, like “the probability is 0.95ahats, .”

Is something like that true? Remember that the probabilities in frequentist hypoth-
esis testing are computed before the experiment is done. Afterward, of course, we
know the exact value aX. So before the experiment, we imagine that there is a
true value fo® (W in our example). The probability that the observed valug of

will lead us to reject the (true) hypothesis that the parameteigghen (at most)

the significance levak. But those are exactly the cases when we will, after the
experiment, choose@a for whichf < 6. Therefore, the lower confidence bound
will later happen to be false, when it sas 6., with probability at mostr. The

fact that we do not know is irrelevant. We state this formally:

Proposition. The probability that a 100(1— «)% lower (or upper) confidence
bound 6 > 6, (or 6 < 6y) computed in a future experiment will betrueis at least
1—oa.

The practical implication of this result for me is that as a consulting statistician
who will compute many 95% confidence bounds during the rest of my career, at
least 95% of my claims should turn out to be correct.

5.7 Summary

Many different probability models will be needed to describe the enormous variety
of kinds of data generated by the many profoundly different experiments one could
perform. We began right away to grotgndom variables, probability spaces with
numerical outcomes, inttamilies, the members of which may be distinguished
by numerical “addresses,” call@drameters. In particular, we began to explore an
especially rich family of random variables called tiegative hypergeometric fam-

ily, which comes about when we realizégpergeometric process. Its probability
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mass function is

()
()

PX = x|W, B, b) = p(x) =

for the member of the family N{, B, b) (2.3). This family will turn out later in

the book to be related to an amazing number of the most useful random variable:
in statistics. Like many families, it possessgsmetries, or relationships between

the probabilities of different members of the family (2.4). We then derived a related
family, the hypergeometric family, with mass function

(D62

("27)

P[IX =xHW + B, W,n)] = p(x) = (3.1).

An important practical applications is féisher’'s exact test of independence in
contingency tables (3.3). This test illustrates a more formal way of interpreting
statistical experiments, callégtpothesistesting (3.4). Thecumulativedistribution
function of a random variableF(x) = P(X < x), can be used to calculate the
probability that a random variable will fall in any interval,,Pc X < y) =

F(y) — F(x) (4.2). Furthermore, it lets us express a mathematical relationship
between the negative hypergeometric and hypergeometric families, cdliakits
(4.3).

We defined thexpectation (average value) of a discrete random variable by
E(X) = ), xip(x;) (5.2). Then the first example of an important technique for
finding expectations, theethod of indicators, was applied to some of our families
(5.3). This suggested a simple methodestimation of unknown parameters, by
matching the observed result to its expectation (6.1). To get stronger information
about an unknown parameter, we turned around the logic of hypothesis tests tc
constructtonfidence bounds (6.3).

5.8 Exercises

1. An ESP researcher makes up a deck of cards on each of which is printed one
of four geometrical figures, one of which is a square. There are two cards
with each figure, for a total of 8 cards. He places them face down on a table
in random order and asks a subject to turn over cards until the first square is
uncovered. He will be impressed if the subject finds one quickly.

a. You believe that the subject has no idea where the squares are. What is
the probability the subject will find one for the first time when the second
card is turned over?

b. Let a random variableX be the number of cards without squares that
are turned over in the course of the experiment. Construct the table of its
probability mass function.
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Write down all the realizations of a hypergeometric process with 5 white
marbles and 3 black marbles. Put a check mark next to all those in which the
first black marble appears before the third white. Does the probability of this
happening match our formula?

. On the first day of class, my roll tells me that | have 6 sophomores among

my 20 students. | need to find out how much calculus the sophomores know,
so | want to interview 2 of them in depth. | do not know which person is
which yet, so | simply go through the class at random, asking them if they
are sophomores, until | find my two. What is the probability that | will ask

5 nonsophomores along the way? What sort of random variable am | asking
about, and what are my parameter values?

. According to a contractor’s records, three very similar varieties of tree, 8 live

oaks, 6 Brazos oaks, and 5 shady oaks, were ordered for planting 20 years
ago along a street of a new subdivision. Sure enough, all 19 trees are still
thriving. However, a tree surgeon must treat the live oaks to prevent a new
blight. Unfortunately, the varieties cannot be distinguished except by careful
examination of several leaves. The surgeon plans to check the trees one at
time and treat the live oaks she finds. Her day’s work will be complete when
she has treated 5 trees. What is the probability that she will identify 4 Brazos
oaks and 2 shady oaks along the way?

. Only 85 out of the 100 integrated circuits in a shipment meet design specifi-

cations (but the customer doesn’t know that). She picks 8 at random and tests
them carefully. What is the probability that threemore of the circuits she
tests will fail to meet specifications?

. Verify the proposition about reversal symmetry of the negative hypergeo-

metric family by writing down the formulas for the two probability mass
functions and showing that they are equal.

. In the same manner as in Exercise 6, verify reversal symmetry in the

hypergeometric family.

. Verify transpose symmetry in the hypergeometric family, using the formula

for the mass function.

. Itis folk wisdom that beer consumption ésuntercyclical; that is, more is

purchased in bad economic times than in good. To study one aspect of this
conjecture, you interview 30 working-age adults and ask whether or not they
are currently gainfully employed and whether or not they have drunk at least
one bottle of beer in the last 24 hours. Your results:

employed no
beer 6 8
no 13 3

Carry out Fisher's exact test of the independence of beer consumption and
employment. What do you conclude? Use the 0.05 significance level.

Thomas and Simmons in 1969 reported on the sputum histamine levels of a
number of allergic and nonallergic people; here are some of their results, in
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parts per thousand:

nonallergic: 4.7 5.2 6.6 189 27.3 291 324 343 354 417 455 480 481
allergic: 31.0 396 647 659 67.9 1000 1024 11120 1651.0

Test whether allergic people tend to have higher histamine levels, using the
sign test. Interpret it with a 0.01 significance level.

Write down the table for the cumulative distribution function for the random
variable X of Exercise 1. What is the probability that the subject will turn
over no more than 4 wrong cards?

Use the formula for the cumulative distribution function of arN(B, 1)
random variable to verify the numerical results we got in

a. the laundry-guarding example (see Section 2.2); and
b. Exercise 11.

In the last chapter (see 4.8.1) we considered the probabilities for outcome
falling in a vertical strip of a circular dart board. Let a continuous random
variable X be thex-coordinate of the point at which a dart hits. Find the
cumulative distribution function oX.

Prove properties (iii)—(v) of cumulative distribution functions (see Section
4.2).

A certain random variable arising from a geometrical outcome on the interval
(0, 2) has density functiorf (x) = 3x(2 — x).

a. Find its cumulative distribution function.
b. Compute P(1.5< X < 2).

In a candy jar with 7 chocolates and 5 caramels, remove candy at random
until you encounter the second caramel. Calculate the probability that you
will have found no more than 3 chocolates. In the original jar, remove 5
pieces of candy. Calculate the probability you will have found no more than
3 chocolates.

Here is a partial table of the cumulative distribution function of a negative
hypergeometric N(2514, 8) random variable:

X 10 11 12 13 14
F(x) | 0.24344| 0.32521| 0.41584| 0.51124| 0.60665

In a graduate class of 39 students, 14 were undergraduate students at Tech.
work down my alphabetic roll of the class until | find 8 who were undergrad-
uates at Tech. What is the probability that | will have passed exactly 14 other
students along the way?

Show that we could have verified the black—white symmetry in the hyperge-
ometric family p[x|H(B, W, n)] = p[n — x|H(W + B, B, n)] by checking

that the mass functions are the same.

There are 12women and 15 meninthe introductory statistics class. The gradel
brings me their first test, sorted in descending order of score.
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a. | glance quickly down the pile until | find the fourth man’s paper. If the
sexes did about equally well on the test, compute the probability that |
would have seen no more than 4 women'’s papers.

b. Onthe other hand, | might glance down the pile until | see the 5th woman'’s
paper. Compute the probability that | would have seen more than three
men’s papers by that point.

A very new and complex computer chip is known to have a high rate of small
defects. The manufacturer admits this but will sell you a box of 40 chips
cheap, with the guarantee that no more than 8 are defective. You need 1C
perfect chips for your process control computer, so you carefully test through
the batch until you have found them. Unfortunately, you find 5 bad ones along
the way, which is disturbing.

Giving the manufacturer the benefit of the doubt, assume that exactly 8 are
bad. What is the probability that you would have founat 5nor e of the bad

ones while retrieving 10 good ones?

Here is a table of the cumulative distribution functiafi(¢) = P(X < x))

for a certain discrete random variable:

X 0 1 2 3 4
F(X) | 0.0182| 0.2153| 0.4871| 0.8865| 1.0

Calculate EX).

Find E(X) for the random variable in Exercise 1, (a) from your table of the
mass function, and (b) using the formula for the expectation of a negative
hypergeometric random variable.

Find E(X):

a. for the negative hypergeometric random variable in Exercise 17; and
b. for the number of nonsophomores questioned in Exercise 3.

There aren delicious strawberries in a basket, but there are in addition 2
contaminated strawberries, which look and smell exactly the same as the
others. However, anyone who bites into a contaminated strawberry will find
that it tastes so awful that he or she will have no further appetite. A person
comes along and begins eating strawberries, and will stop only on biting
into a contaminated one. Let a random variakilde the number ofjood
strawberries eaten.

a. Give the range of possible valuesXfand find its probability mass func-
tion p(x) = P(X = x). If n = 12, what is the probability that 7 good
strawberries will be eaten?

b. For anyn good strawberries, compute ).

If we have a random variable wifmite sample space, why is our formula for
E(X) always absolutely convergent?
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A rancher has scattered 8 black sheep among his large flock. As a new shep
herd, you count the sheep returning to their pen from a day of grazing, and
the first black sheep is the 20th sheep you see.

a. Use the method of moments to estimate the total number of sheep in the
flock.
b. Find a lower 95% confidence bound on the number of sheep in the flock.

State a precise definition of the upper 108()% confidence bound for a
parameter of a random variable. Find an upper 99% confidence bound for the
flock size in Exercise 26.

In experiments whose outcomyes an N(W, B, h random variable, compute

a method-of-moments estimate:

a. for W, if B andb are known;
b. for B, if W andb are known; and
c. for b, if W andB are known.

5.9 Supplementary Exercises

29.

30.

31.

32.

33.

Show that for the hurricane example, wittx) = 1/t forx =0,1,2, ...,

the cumulative distribution function iB(x) = 1 — 1/2**1,

In Exercise 30 of Chapter 4, let a continuous random varigtide the distance

of arandomly chosen house from the freeway. Find its cumulative distribution
function.

Using the definition of a limit from advanced calculus, prove properties (i)
and (i) of cumulative distribution functions.

From a list of 39 potential earthquake sites around the world, a psychic claims
she can identify those that will have a 6.0 Richter or greater earthquake in the
next 5 years. She writes down those 14 sites she believes are in the greate:
danger and seals them in an envelope. In fact, 20 of the sites have earthquake:
What is the probability that the psychic will have identified at least 8 of them
correctly, purely by chance?

Hint: Use the table in Exercise 17, and do very little arithmetic.

Show that we could have verified the black—white symmetry in the hypergeo-
metric family P[{H(W + B, W, n)] = p[n —x|H(W + B, B, n)] by multiple
applications of reversal and transpose symmetries.

Computing cumulative distribution functions for negative hypergeometric
random variables can be time-consuming, but there is a useful shortcut:

a. write down the formula fop(0); then
b. write down a simple formulafor(x) = p(x)/p(x —1), canceling as many
factors as you can.
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This lets you recursively compute the cases 1,2, 3, ... by the formula

plx) =r(x)plx — 1).

Use the formula from Exercise 34 to reconstruct the table in Exercise 17.
Invent a recursive computational procedure for the probabilities of any hy-
pergeometric random variable, similar to the one in Exercise 34. Redo the
calculations in Exercise 9 using your simplified arithmetic.

Some calculus books say that a shma; is absolutely convergent ¥, |a;|

exists (so that for an expectatioh,, |x;|p(x;) has a finite sum). Prove that
this definition is equivalent to ours.

Find a simple expression for the expectation of any hypergeometric random
variable, using the method of indicators.

Use the result of Exercise 38

a. to find the expected number of bad circuits located in Exercise 5; and
b. to find the expected number of predicted earthquake sites in Exercise 32.

. Of 40 engineering majors in an engineering stat class, 12 are mechanical en

gineers and 15 are industrial engineers. The instructor chooses 10 to represer
the class in a stat contest.

a. If major should have no effect on who is chosen, what is the probability
that 3 mechanical engineers and 5 industrial engineers will be chosen for
the contest?

b. On average, how many mechanical engineers would you expect to be
chosen for the contest?

Consider the first positive integer$l, 2, 3, ..., n}. Choosen of these num-
bers at random without replacement and call their sanfFor example, if
from the first 5 integers you chose the three numbers 4, 1, and 3xtheB).

a. Whatis E)?
Hint: Use the method of indicators and the fact theft ; i = r(r +1)/2
(see Exercise 3.23).

b. Therefore, inthe discussion of rank statistics (see 2.5.5), assume that rank:
are unrelated to level of the treatment, and comput& Eénd ER;).

A jeweler has a set of 100 identically cut diamonds in a drawer. By accident,
someone mixes up in the drawer an unknown number of excellent fake di-
amonds of the same size and cut. You set out to find the fake diamonds by
careful inspection. After finding 13 real diamonds, you locate the first fake
one. You want to decide what this tells you about how many fake diamonds
there are.

Hint: A reasonable probability model for the number of real diamonds found
so faris NW, B, 1). But which parameter is unknown?

a. Find a method-of-moments estimator to estimate the number of fake
diamonds.
b. Construct alower 95% confidence bound on the number of fake diamonds.
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c. Construct an upper 95% confidence bound on the number of fake
diamonds. Which bound gives you more useful information?

43. a. Using the result of Exercise 38 and given the re3ubyf an experiment
which is HW + B, W, n), find method-of-moment estimates, in turn, for
B, W, andn, if the other two parameters are known.
b. For the census data from Chapter 1, Exercise 32, use (a) to estimate the
total population of that census tract.
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CHAPTER 6

Discrete Random Variables IlI:
The Bernoulli Process

6.1 Introduction

Inthe last chapter we looked at several families of random variables that arise from
the hypergeometric process. As the size of the urn (out of which we are imagin-
ing we draw marbles) grows, the calculations we have to do to find probabilities
become complicated. In this chapter we will explore some simpler approximate
calculations, which will work when the number of marbles removed, or the number
of marbles being counted, is relatively small. The approximations will be inter-
esting random variables in themselves, and we will discover thereby several new
families and a new stochastic process Baenoulli process, out of which they arise
naturally. We think of this as sampling froimfinite populations. As the outcomes
being counted grow rarer, a further simplification is possible, leading tBdise

son family. On the way, we learn a new method for evaluating certain expectations
and use it to measure population variability. Then we find ways of constructing
simultaneous upper and lower confidence bounds for unknown parameters in ou
families.

Time to Review

Chapter 2, Sections 2—4
Limits of sequences
Power series for the exponential function.
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6.2 The Geometric and Negative Binomial Families

6.2.1 The Geometric Approximation

We noted in an earlier chapter that in our urn problems, if the number of marbles is
very large, then an experiment that involves removing relatively few marbles will
not deplete the total very much.

Example. Kim is looking for a job. A helpful hostess holds a party in which 30
prospective employers and 50 other employment seekers are invited. She hope
that while having fun, some people will also find jobs. Kim arrives, and knows no
one; the guests are milling around in a large ballroom. What is the probability that
the fourth person Kim talks to will be the first employer?

In this case approximation by a dravith replacement (i.e., assuming indepen-
dence of the draws) may work satisfactorily. The urn model mighvbe 50 and
B = 30, and a negative hypergeometric random variable in which we are looking
for the first black marble [N/, B, 1)]. Thenx = 3, and our calculation is

(W), _ 50-49-48.-30
(W+B)y1  80-79-78-77

The practical consequence of the fact that we are not depleting the total supply of
marbles (prospective employees) very much is that we would expet®HM8

to be pretty close to 5050- 50 = 50°, and 80 79- 78 77 to be pretty close to
80-80-80- 80 = 80" Trying this approximate calculation, we obtaifx) ~

%30 = 0.09155, which is indeed fairly close to the same answer. Notice that
the calculation is exactly the one we would do if we were doing our draws with
replacement, and so not depleting the jar at all.

When does this approximation work well? In the birthday inequality (see 3.5.3),
we discovered that{, /n* is close to 1 Whel@ is small compared to; that is, we
permute so few of the available objects that drawing with and without replacement
is almost the same. To make our approximation work, we would need to have that

(3) is small compared tav and (*}*) is small compared t&V + B. But (}) is
smaller than(*}").

= 0.092945.

p(x) =

Proposition. For an N(W, B, 1) random variable X, if (*}") is small compared
to W then p(x) ~ W*/(W + B)**'B.

In the party example, our approximation could be expected to work because
(5) = 6 is small compared to 50.
/4

It will be interesting to rewrite this as(x) ~ (35)" 725 The quantity;
is just the probability that the first marble one draws is white; let us give it a name,
p- Then£— = 1 — p is the probability that the first is black. Then we can
rewrite p(x) ~ p*(1 — p). This formula has the nice property that we need to
work with only one parametep, rather than twoW and B, to use it. Remember
that the calculation was exact for draws with replacement, that is, for a sequence

of independent experiments.
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6.2.2 The Geometric Family

The calculation from the last section suggests that we have a family of random
variables of interest in itself:

Definition. Consider a sequence of independent trials for which two outcomes are
possible at each trial. The probability of one outcome, usually caltedass, is

p (and the probability of the other,failure, is 1— p), where O< p < 1. (These

are, of courseBernoulli trials, see 5.5.3) Then the number of successbgfore

the first failure is egeometric random variable. Since the sequence can continue
indefinitely, its sample spacef§, 1,2, ...}.

We compute the probability of successes in a row followed by a failure, when
each trial is independent:

Proposition. For X geometric, p(x) = p*(1 — p).

Example. In the hurricane example (see 4.5.2), let the number of hurricanes be
geometric withp = 0.5. Then the formula gives uys(x) = 271, as claimed.

The same random variable is a model for tossing a fair coin until you get the first
tail.

6.2.3 Negative Binomial Approximations

The approximation method from Section 6.2.1 can be used on a more genera
problem:

Example. | learn from an anonymous survey that of a sample of 100 people, 40
admit to having cheated on their income tax. | want to do an in-depth, follow-up
confidential interview of five cheaters. What is the probability | will have to talk
to exactly nine people among the sample to find them?

This is negative hypergeometric, with= 40, = 5, W = 60, andx = 4, so
p@) = (§) %)/ (%) from our big formula. The way of organizing the calculation
that allows the most cancellation, and so leaves us with the fewest multiplications,
is

91! 60! 40!
_ (8) 56351 _ (8) 56135 _ (8)(60)(40ks _
p(4)—<4) 100 — (4) 1000 — \4) 200 = 0.0937.
60!40! 91!

It occurs to us, as with the last such calculation, that, for example, €6@0- 59-

58. 57 should be fairly close to 60= 60- 60- 60 - 60. Here there are two other
permutations where such an approximation is plausible. Using the condition from
the birthday problem, we check thgl) = 6 is small compared to 60 arff) = 10

is fairly small compared to 40; so we compute

8\ 60*40°
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Since the calculation was notably easier, this is attractively close.
Generally, what we did was to rewrite the probability mass function to cancel
as many large factorials as possible:

(I ( +b- 1) (W)<(B)s
("4F) (W + B)aso
We can say when replacing the permutations by powers will work satisfactorily:

Proposition. For an N(W, B, b) randomvariable, when (’;) issmall compared to
W, and () issmall comparedto B, then p(x) iscloseto (*** ™) W* B /(W +B)**?.

X

We have not needed to put in a condition for the denominator approximation,
(XZ”) small compared t& + B; you will check in an exercise that this follows from
the conditions we did give. Once again, let the quaititi{ W + B), the probability

that the first marble drawn is white, be calledSinceB/(W + B) = 1 — p, our

approximation formula can be rewritten:

_(x+b—-1\ W* B*  (x+b-1\ |
p(x)“< x )(W+B)X(W+B)b_< x )p(l_p)b'

6.2.4 Negative Binomial Variables

We derived the above approximation by assuming that we were drawing so few
marbles out of so many that the difference between drawing with and without
replacement was relatively unimportant. What would happen if we really had
drawn with replacement, and so had true independence between draws? Then tt
probability of a given sequence withwhites and blacks isp* (1 — p)?, because

we simply multiply the probabilitiep of each of thex white marbles and the
probabilities 1— p of each of the black marbles. If this sequence has arisen in a
search for thébth black marbles then the number of such sequences is the number
of ways we can distribute white marbles among the previodst x — 1 draws,

or (“*»~%). This is a whole new family of random variables:

X

Definition. A negative binomial random variable (with parametersvherek =
1,2,3,...,andp where 0< p < 1), NB(k, p), is the number of success&s
before thekth failure in a sequence of independent trials with probabpitef
success at each trial.

Proposition. Anegativebinomial NB(u, p) randomvariable X has sample space
all nonnegative integers (X = 0,1,2,...) and p(x) = (“"* ) p*(1 - p)’.

X

The sample space is unbounded because when we draw with replacement thel
is no limit to the number of white marbles we may encounter.

Notice that the geometric random variable was just the special case of looking
for only one failure, NB(1p). But now there are others of possible usefulness:

Example. Every time I turn on the reading lamp on my desk, there is a probability
of 0.05 that the bulb will blow out. | have two spare bulbs, in addition to the
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one in the lamp. What is the probability that | will have to shop for bulbs after
turning on my lamp for the 60th time? This might be negative binomial with
k =3, p = 0.95, andx = 57 (because the other three times a bulb blew). Then
p(57) = (3)(0.95)°7(0.058 = 0.01149.

6.2.5 Convergencein Distribution

There is another way of looking at our result that if the number of marbles of each
kind is large compared to the number we are looking for, then a negative hyper-
geometric random variable is well approximated by a certain negative binomial
random variable. Instead, imagine that we have a sequence of urn problems ir
which we are always searching for the same nunsbef black marbles, but the
number of white and black marbles is getting larger and larger. Then the negative
binomial approximation to the probability mass functjefx) is getting better and
better. But for any given value of, the cumulative distribution function may be
written F(x) = Z;:o p(y), so that it is the sum of a fixed, finite number of terms
p(y). We conclude that our approximation fois also getting better and better.
This is an example of an important phenomenon.

Definition. Consider a sequence of random varialhleég and an additional vari-
able X, each with sample space the integers, and with cumulative distribution
functionsF; and F, so that for each in the sample space df, lim;_ o, F;(x) =

F(x). Then we say that the sequencé} convergesin distribution to X. We
write X; — X.

Another way of putting it is that the sequence of random variablé$ is
asymptotic to X. The importance of convergence in distribution is usually for
applications just like the one we have seen: If we have reason to believe that &
complicated random variable is far along in such a sequenceXahnas some
simple properties, then we hope to find that our random variable approximately
shares those simple properties.

Proposition. Let the sequence of negative hypergeometric random variables
N(W;, B;, b) be such that B; — oo and ; " - — p asi goesto infinity, where
0 < p < 1. Then the sequence converges |n i:i|str|but|on to a negative binomial
NB(b, p) random variable.

Proor. We must simply check that the approximationgfx) gets as good as

we please for each, because then the approximationf@r) gets as good as we
please for each, as we noticed earlier. But our condition for a good approximation
requires thaB; be arbitrarily large compared @ sinceb is fixed and theB’s

are going to infinity, that is certainly happening. Also, tiés must become large
compared tc@) for each fixedr; show as an exercise that this must happen because
the W’s approach a fixed proportiopm of all the marbles, and thB’s are getting
numerous. O
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The relationship between the negative hypergeometric and negative binomial
oughtto give us more information. Perhaps we can see what happens to our formul:
for the expectation as the number of marbles grows:

. . Wb . Wi W
lim E(X;) = lim =b lim =blm —
i—00 i—oo B +1 i—oo By + 1 i—oo B;

— b lim Wi /(W; + B;) __br
i»oo Bi/(W;+B;)) 1—p

using standard facts about limits. We would like to say thatif— X, then
E(X;) — E(X); therefore, for a negative binomial NB(p) random variable,

E(X) 2z kp/(1 — p). This last formula will turn out to be correct; but it is not
always true that the expectation of the limit is the limit of the expectations (as
you will check in an exercise). We will verify the formula in other ways, shortly.
Meanwhile, notice that it predicts in the dice example that to get 3 sixes you will
on average make%%e/6 = 15 unsuccessful rolls, which is reasonable (5 nonsixes
for each six). Of course, in practice you might make no bad rolls, or a million.

6.3 The Binomial Family and the Bernoulli Process

6.3.1 Binomial Approximations

Our urn problems can become painfully large in other, quite different, ways.

Example. A wealthy grandmother dies and leaves her estate to her 5 grandchil-
dren, all of whom live in a small town (with 255 households). Unfortunately, none
of them share her last name, and she did not give last names in her will. As ex-
ecutor, you will have to simply visit every house in town, until you find them. You
decide to visit until you have crossed 100 hométhout an heir off your list the

first day (that is all the frustration you can stand). What is the probability you will
find 2 heirs that day?

If you visit houses at random, this has an urn model With= 5 successful
marbles andB = 250 failures. We are doing a negative hypergeometric search
with b = 100: Therefore,

(100+2—1) (250+5—100—2) 101100 153-152151

_ 2 3 _ T 6 _

p(2) = (250+5) = isosammammsi — 0-3422
5 120

As unpleasant as this calculation was, we got a good deal of cancellation; the
general situation is that when the number of black marBlesd the number of
black marbles to be founblare large compared to the number of white marbles,
then the most cancellation is gotten by organizing the negative hypergeometric
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calculation as

(b1, (W+fv;f;;!f)w—x - (W) (x+b—1),(W+B—b—x)w_yx

p(x) =
7(W:_V?)W X (W + B)W

SinceW is small comparedt8 andb, itis reasonable to presume that, for example,
255.254.253.252. 251 is close to 251 This is not quite the same approximation

as the birthday-problem formula used at the beginning of this chapter: Notice that
the approximation is on the low side of the exact value. Nevertheless, there is a
similar bound to the error.

Proposition. eX/0+=D(G) < (n + k — 1) /n* < /MG,

Proor. Exercise. It precisely parallels the proof of the corresponding proposition
in Chapter 3.5.3. In fact, if we had been imaginative enough to invent “negative”
permutations (in which the products go up instead of down, as in some of the Urn
Problem 4 (see Exercise 3.37) calculations, the two results could have been a sing|
proposition. O

Applying this proposition to our rearrangement of the hypergeometric calcula-
tion, we get

() = (W)(x+b—1)x(W+B—b—x)W_X

X (W + B)w
(W\B(B — b+ 1)V
N(x) (B+ 1)V '

Proposition. Whenever (%) issmall comparedtob and B + 1 — b, then
w~ (" b*(B +1—b)V—x
PR BtV

The approximation uses the last proposition and the facttlaaid W — x are
no greater thanmv.

Example. In the problem with the heirg(2) ~ () 22845%° — 03456, which is
within about 1% of the correct answer.

6.3.2 Binomial Random Variables

Inspired by our earlier work, we simplify the expression by leté#rigB + 1)=p,

the probability that a single white marble will be selecte@) ~ (*) p*(1— p)V .

As before, we would like to interpret this approximation as a probability of inter-
est in itself. White marbles are rare in these urns, and so they are usually widely
scattered through the sequence of marbles we draw. If we imagine creating oul
sequence by sowing white marbles at random into the long sequence of black mar
bles, it seems plausible that these drops are almost independent of one anothe
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because earlier white marbles are so few as to have little effect on the next drop.
This suggests the following definition.

Definition. In a sequence of (= 1,2, 3, ...) independent trials with probability
p (0 < p < 1) of success at each trial, thefy the number of successes, is a
binomial [B(n, p)] random variable.

We imagine a success to be a white marble that was dropped befobththe
black marble, out of a total dV white marbles introduced. Each sequence of the
desired number of successes and failures has probapility— p)"—, because
each trial is independent of the others, and so we just multiply. The number of
sequences of trials with x successes among them is, of course, @J)st

Proposition. The sample space of a binomial B(n, p) random variable is
{0,1,...,n},and p(x) = (';)px(l - p)y.

Compare this to our result about approximating negative hypergeometric random
variables:

Proposition. Let X; be a sequence of N(W, B;, b;) random variables such that
B; - oo and b;/(B; + 1) — p where0 < p < 1. Then the sequence converges
indistribution to a B(W, p) random variable.

Of course, this new family is not just an approximating device.

Example. A certain lung disease in newborns is fatal in 70% of cases. A new
treatment has been proposed, but you doubt that it will improve the survival rate.
Ten randomly chosen patients are to be given the new treatment. What is the
probability that exactly 2 will die?

If you are right, then the number of survivors will be a binomial B(QQJ)
random variable, since presumably the newborn’s chances are independent of on
another. Thep(2) = (%)(0.7)%(0.3)° = 0.00145, which is about one time in 700.
Even if we add in the even rarer possibilities of 1 or 0 deaths, gettipgyalue
well under 0.01, this is so unusual that if it happens that way, you should rethink
your skepticism about the new treatment.

We can calculate the limit of the expectations in the sequence above:

lim E(X;) = lim Whi _wiim b Wp,
i—o00 i 1 1

i—oo D; i—00 Bi —+

which leads us to the conjecture that for a binonBdh, p) random variable,
E(X) = np. Intuitively, the expected number of successes is the number of trials
times the proportion of successes. This conjecture will turn out to be correct, later
in the chapter. In our example, we would expect 7 patients to die, on average.
The binomial random variable has a symmetry to it that follows from the re-

versal symmetry in a hypergeometric variable: counting the white marbles that
are drawnafter the bth black marble. The probability that a single white mar-
ble will fall in that range is, of course‘iB%lI)” = 1 — p, which we now think of

as the probability of a failure. But after independent trials, we conclude that
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P[x|B(n, p)] = P[n — x|B(n, 1 — p)]; this just says that if we observe that a cer-
tain number of experiments are successes, the rest must be failures. Interestingly,
negative binomial family has no reversal symmetry, because the sequence of trial
has no necessary end point.

6.3.3 Bernoulli Processes

It is natural to wonder whether there is a connection between negative binomial
and binomial probabilities. The mass functions are obviously not the same. The
relationship can be explained as follows:

Definition. A Bernoulli(p) processis a sequence of independent Bernoulli trials,
with probability of succesg(0 < p < 1) at each trial, thought of as continuing
indefinitely. A realization of such a process is a particular sequence of successe:
and failures.

For example, FSFFSFSSSFSFFSSFSFS is a segment of the realization of suc
a trial. Notice that the probability that a segment of this length will look like this
is just p19(1 — p)°. We see that a negative binomial random variable is just the
number of successes before #th failure in a Bernoulli process. Furthermore,

a binomial random variable is the number of successes in the:firsls of a
Bernoulli process. Thus, the two are related just as negative hypergeometric anc
hypergeometric variables are related—two corresponding stopping rules in the
same sort of stochastic process (see 5.4.3).

This tells us that we can use precisely the same reasoning as before to connet
the cumulative distribution functions of the two random variables: “At most
successes precede ttid failure” is equivalent to “at most successes are in the
firstx + k trials.” Therefore, we have a corresponding equality:

Proposition (positive—negative duality).

(i) FIxINB(k, p)] = Flx|B(x +k, p)].
(i) Flx[B(n, p)] = F[xINB(n —x, p)].

Bernoulli processes, of course, have their own black—white transformation: We
interchange those outcomes we call successes and those we call failures. Th
probability of success then becomes-1p. In a binomial experiment, we are
counting what used to be failures afietrials, which is, of course, all those that
were not successes—we have simply rediscovered reversal symmetry. In a negativ
binomial experiment something more complicated happens, since we have change
the stopping rule. As in the negative hypergeometric case, we reason that “at mos
x successes by thih failure” is equivalent to “more thak — 1 failures appear
by the  + 1)st success.” Now interchange success and failure to get an important
symmetry:

Proposition (black—white symmetry).
F[xINB(k, p)] = 1— F[k — 1INB(x + 1,1 — p)].
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6.4 The Poisson Family

6.4.1 Poisson Approximation to Binomial Probabilities

We invented negative binomial and binomial random variables to approximate
certain urn problems that, though involving many marbles, in practice required us
to count relatively few marbles. This does not mean that these new families are
useful only in problems involving small counts.

Example. A manufacturer of integrated circuit chips says that the probability that
one of his chips will be bad is no more than 2%. You will periodically test 100
chips, chosen at random, and you will complain to the manufacturer if you discover
6 or more bad chips. What is the probability that from a given experiment you will
complainin error? The number of bad chips in a test batch might be a B{1I)
random variable.

PX>6)=PX >5)=1-P(X <5)=1-p(5)— p@)—---— p(0),
wherep(5) = 1009998979625 9g% = 035347, and so forth. This is a longish,

but not impractical, hand calculation. We conclude that the total probability of
rejecting a batch is 0.01548; so we will not be sounding the alarm in error very
often.

This calculation reminds me of cases where we could do simple approximations
in earlier sections. Whenis large compared te, we would presumably organize
the binomial calculation ag(x) = %px(l — p)"~*. But we now know that if

(iLj) is small compared ta, then @), is well approximated by:*. In this case,
p(x) ~ CEE (1 — py.,

Sincen is large andx is small, we are presumably interested in cases where
p is small; therefore, the quantiiyp is not too large compared o This leaves
the exponenty — x, the only irritatingly large part of this expression. Let us see
whether we can simplify that as well: First factor it into a large and a smaller piece
(- p)*/(1— p)*. Remembering that + p < ¢~ 7 (see Exercise 3.24), we have
that (1— p)" < "7 using the basic multiplicative property of exponents. In the
quality control problem, this means tha8'® = 0.1326 < ¢~1000.02 — 0,1353.
It seems that the exponential upper bound is fairly close; perhaps we may use it a
the desired approximation? To do so we need to find out how close it is in general,
which means that we need a lower bound. This will require a bit of ingenuity:
4 =1+ % < eP/=r) But then

1-p —
1 —n p —n ~ .
1-p) = =(1+ > ¢—/(1=p)
1-p 1-p) ~

How close is this to the upper bound? A little algebra establishes thatﬁnpce
1+ lL we have e—"l’/(l—P) — e—"P—"PZ/(l—P)
_p’ .

Proposition. (i) e e /1P < (1 — p)* < e "P.
(i) 1f np?/(1 — p) iscloseto zero, then (1 — p)* /e isclose to one.
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The second fact follows because in that case the second exponential in (i) is clost
to 1. Furthermore, sinc(a;) is small compared ta, we have for our remaining
piece (1- p)* =~ ¢~*? ~ 1. We have now assembled the facts necessary to state a
very useful approximation to a binomial random variable:

Theorem (Poisson approximation to the binomial)For abinomial B(n, p) ran-
dom variable such that np?/(1 — p) is small, then if () is small compared to n,

we have p(x) ~ @2 g=np,

Txl
Example. In the quality control problem with = 100 andp = 0.02, we note
that 1222Q92F _ 00408 is much smaller than 1, a(§) is small compared to 100.

Then we feel free to trp(5) ~ %e*z, and so forth for 43, . ... The probability
of rejecting a batch turns out to be approximately 0.0166, which is reasonably
close to the exact answer, 0.01548.

Our approximation to the probability mass function is attractively simple, par-
ticularly so since the parameters of the binomial always just appear as the produc
np; this is the quantity we have claimed will turn out to be the expectation of a
binomial. It is common to write thia = np (Greek letter lambda), so that our
approximation looks likep(x) ~ %e"‘.

6.4.2 Approximation to the Negative Binomial

Such a simple result deserves to be used in other problems, and justice triumphs
The same formula is useful in approximating certaggative binomial proba-
bilities. The idea will be that ifc is small enough and is large enough, then

n
p0 = (T oy = D sy

we may sometimes be able to replaeedk — 1), with k*. In a similar way to the
binomial case, fop small we may sometimes be able to say that (3)* is close

to e~*7/(=r) Notice that we contrived the exponent to match what we conjecture
to be the expectation.

Theorem (Poisson approximation to the negative binomialFor a negative bi-
nomial NB(k, p) random variable such that kp?/(1 — p) is small, then if (}) is
small compared to k, let & = kp/(1 — p). Then p(x) ~ %.e~*.

Proor. Exercise. The argument parallels the previous one, with slightly more
work required to arrange that the parameter equal the expectation. O

Example. The rare XXY configuration of the sex chromosomes occurs in about
1.5% of all human males. You require a sample of 400 men who do not possess
this arrangement, so you test a random sequence of men until you have enoug
without this configuration. What is the probability of 3 or fewer XXY subjects that
you must discard from your sample?
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The negative binomial model is reasonable here, with400 andp = 0.015.
Then we calculate(3) = (*3%)0.015°0.985'%° = 0.08591; and so forth for 2, 1,
0 to get 0.1452. We suspect that the Poisson approximation might be appropriate
sincekp?/(1 — p) = 0.09137 and(;)/k = 0.0075 are fairly small. We have

A_—_60914 and so

6091@ e 60914 _ 0,08522

pR)~
The total approximate probab|I|ty is 0.1432, which is quite close to the exact
calculation.

6.4.3 Poisson Random Variables

When we found useful approximations to probability mass functions earlier in the
chapter, the new formulas turned out to be exact for certain new families of random
variables. Our luck will hold, but unfortunately, our new family cannot be realized
by some simple probability process that can be modeled exactly by draws from an
urn, or rolling dice, or some such experiment. We shall have to wait to develop the
tools to define thi$oisson process; in the meantime, we have a probability mass
function p(x) = A*/x!e~*, which may give us the probabilities we need. We note
that forx > 0, the probabilities are positive. Furthermore,

o 2X

— —k 0 __
> e Z =e’=1
x=0
by a standard infinite series you learned in calculus. Therefore, our probabilities
sumto 1, and we have the information required to define a discrete random variable

Definition. A Poisson random variablel with parametek > 0 has sample space
X =0,1,2,...and probability mass functiop(x) = (A*/x!)e .

We gather clues from its applications so far as to how this family might be useful.
In both the negative binomial and binomial cases, it approximately described a
situation in which we counted successes in independent Bernoulli trials when the
probability of success was very small, but the number of failures, or trials, was
rather large. Generally, we will think of using Poisson random variables as models
when we are counting rare, independent events. We may intersietce it isnp
in the binomial case, as a measure of the average rate at which the rare events a
happening.

Example. The lightning rod on the top of a certain skyscraper is hit by bolts of
lightning at an average rate of about 3 times per year, based on many years o
experience. What is the probability that it will be hit 6 or more times next year?
Since these strikes are rare occurrences, and presumably independent when look
atover long time intervals, we presume that the number of hits is a Poisson variable
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with A = 3. Then
PX >6[A=3)=1-PX <5)=1-p(5)— p@d)—---— p(0);

we calculatep(5) = 5,6 = 0.10082. After calculating all 6 probabilities, our
answer is then 0.0839.

We could have pretended that there were 1000 chances for lightning to strike in
a year, with a probability of 0.003 that each would happen; then we would use the
Poisson approximation to a binomial variable, with the saras before, and get
the same answer. But we have no idea how many times lightning almost struck; sc
we use the Poisson model directly.

Our approximation results may be interpreted as limits.

Theorem (Poisson limits in a Bernoulli process (i) Given a sequence of neg-
ative binomial random variables { X;} distributed NB(k;, p;), where p; — 0 and
k; pi/(1—p;) = A > 0, thenthe sequenceconvergesin distribution to a Poisson(i)
random variable.

(i) Given a segquence of binomial random variables {X;} distributed B(n;, p;),
where p; — Oand n; p; — A > 0, then the sequence converges in distribution to
a Poisson(A) random variable.

We can get some idea of the expected value of a Poisson random variable by
looking at the behavior of similar binomials: ljm., E(X;) 2 liM; oo nipi = A
After two speculative uses of limits, we conjecture that the expectation of a Poisson
random variable simply equals we will shortly verify that this is correct. Notice
that we were taking advantage of this guess in the lightning problem: We would
estimate the rate of strikes per year by finding the sample average number ove
many years.

Poisson random variables are so simple that they have no symmetries at all
Nevertheless, or perhaps because of this, we will find them enormously useful
from now on.

6.5 More About Expectation

We have speculated about the expectations of some of our limiting families, using
somewhat dubious limit arguments to get plausible-sounding results. Let us tackle
these problems more directly from the probability mass functions.

Let X be Poissori); then if the expectation exists, we would have

X

E(X) = pr(x) ZX _ et
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The first term in this sum is zero, and in all others Fheancels the first factor of
X

E(X) = Z (X 1)|

Except thatX starts at one instead of zero, this reminds us of a sum of Poisson
probabilities; so substituté = X — 1:

e )\1+Y o) )\,Y
EX) =) e =22 3¢
y=0 - Y=0

Butthe sumisjustthe total of all the probabilities of possible values for a Poigson(
random variable, which is, of course, 1. SO (= A, as conjectured.

This technique, rearranging the expectation formula so that the hard part is a
sum of all probabilities and so equal to 1, appears everywhere in statistics. We will
call it theinductive method.

You may have noticed that when we used summation notation in our expectation
formulas, we let the index of summation be written cap¥alr Y, as if the index
were a random variable. It turns that the index of summation behaves just like a
random variable in such formulas; we do not know its value yet, but it must be one
from the list. This convention will be particularly helpful later, when our random
variables are no longer discrete.

The same approach gives us the expectation of a binomial ;B(random
variable:

! n—X 1 n! .
E(X) = ZXX|( — X)) p*(1-p) X—;mpx(l—m x.

Once again it seems reasonable to substitute X — 1:

n—1 |
E(X) — Z mpl-‘rY(l _ p)n—l—Y

=np Z Y'(n - Y)| Y(l _ p)nflfY.

Now the part under the summation is the collection of all probabilities fora-B(

1, p) random variable, which sum to one; so as we hoped)Ef np. The sort

of change fromn to n — 1 often happens in this method and is why we chose to
call it the inductive method, since it may remind you of proofs by induction in
mathematics.

Proposition. For X following the law

(i) If X isPoisson(1), then E(X) = A.
(i) 1f X isB(n, p), then E(X) = np.
(iii) 1f X isNB(k, p), then E(X) = kp/(1 — p).
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The proof of (iii) is an exercise, using the same inductive principle of rearranging
the sum so that the hard part equals 1. You might also try some harder calculations
using this technique to verify our expressions for the hypergeometric and negative
hypergeometric expectations (see 5.5.3).

Example. Approximately 10% of Americans are left-handed. You need 20 left-
handers for a study of the relationship between left-handedness and left-footednes:
How many people will you have to interview, on average, to get your 20?

Strictly, interviews are not independent: Since we do not interview anybody
twice, we are really selecting without replacement. In practice, the number of
Americans is so huge compared to the number we are interviewing that it might
as well be with replacement. We pretend that interviews are independent, and thel
the number of righties interviewed is negative binomial. In this way, we do not
even have to figure out how many Americans are eligible for the study; just the
probability 0.1 of a success. The expectation is theryégg = 180right-handers
to be interviewed, for a total of 200 interviews.

Example. Generate a discrete random variable by the following procedure: (1)
Use a calculator or a computer to generate a real-valued random nixmbeér
formly on the interval from O to 1; (2) calculate = 1/ X; and (3) write dowriz,

the largest whole number no bigger thenThenZ has sample space 2,3, .. ..

For example, my calculator geks = 0.2289823; therY = 4.36715, andZ = 4.

Now

F)=PZ <2)=1-P(Z=>z4+1)=1-PF¥ >z+1)
=1-PX <1/G+1)=1—-1/(+1).

We use our rule for extracting the probability mass funcién) = F(x)—F(x—1)
to conclude thap(z) =1—-1/(z+1)— (1 —1/2) = 1/(z(z + 1)). For example,
p(4) =1/20.

Now let us find the expectation &f:

> 1 e 1 1 1 1
E@)=) Z—————=) ———=_+_+ "+
@) ZZ::l Z(Z+1) Zz::lz+1 2 3 4
In case you do not remember how to sum this famous series (callédrimenic
series) from calculus, let us see whether we can approximate the answer. Ou
approach will be to partition the sample space into a convenient collection of events:
C, = {1}, G = {2, 3}, G3{4, 5,6, 7}, and generally C= {21 < X < 2'}. This

is a useful partition because RJG= F(2' — 1) — F(2'~1 — 1) = 27", Instead of
multiplying each outcome by its probability and summing, we will fintbaer

limit for the expectation, by multiplying the probability of each element of the
partition by thesmallest value of its constituent outcomes:

E(X) = ;Xp(X) => {Z Xp(X)} =2 [ggg_ X; p(X)}

i XeC;
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= min XP(G).
Z min XP(G)

In our problem, micc, X = 21, so our lower limit is

Zminxp(o)zizi—lz-f =i} =}+}+---,
— XeC; ~ ~2 2 2
which is, of courseinfinite. Since a lower bound on our expectation is infinite, we
can only conclude that the expectation of our random variable is infinite. Some
simple random variables do not possess a finite expectation.

What practical meaning does the lack of a finite expectation for the results of
an experiment have? If you repeated, for example, a binomial experiment a grea
many times and averaged your results, you would find that with high probability,
the answer would be close to our expected vajpéas we will check later). But if
you repeated the calculator experiment many times and took an average, the resu
would be highly variable, no matter how many times you repeated it. | generated
1000 independent copies of this random variable; my average was 7.80. | generate
a second set of 1000 values; this time the average was 18.01. It showed no sign c
settling down to some single value.

6.6 Mean Squared Error and Variance

6.6.1 Expectations of Functions

Random variables often represent efforts to measure some important number whe
there is random “noise” that keeps us from doing so accurately. For example, if
80% of the voters in a country favor some policy (though we do not know this), we
might try to find this out by interviewing 100 people picked at random about their
opinion. The result is unpredictable, but a reasonable model is that the numbel
interviewed will be a binomial B(1Q®.8) random variable. In our hearts, we
believe that the “true” result of our experiment ought to be 80 in favor, so that the
percentage is representative of the country as a whole.

In (5.6.1), we used the observed value of a random variable to get a method-of-
moments estimate of a parameter in a family. We were seeing a pargmater
an unknown, ideal value for whicK is an erratic reflection. How good ¥ as
a measure oft? Statisticians use any of a number of standards of closeness of a
random variable to some fixed value, but the single most useful one was popularizec
by the French mathematical astronomer Legendre about 1805. He proposed the
the average value of the squared differen&e; (+)?, was particularly easy to work
with as a measure of how faf was, on the whole, from the ideal value. Clearly,
this was inspired by theample mean squared error from least-squares theory (see
2.2.2). For random variables, expectation embodies our idea of the average, bu
we apparently have to move beyond our basic idea of the expectatirnaothe
concept of the expectation of some function, cali(i). If our random variable
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were discrete uniform, then the expectation should still be a simple average, but
now of the values of, thatis, E[¢X)] = 2 >, g(x;) if there arex equally likely
values. We should apply our weighted-average technique for the case of genera
discrete variables:

Definition. Let X be a discrete random variable apda real-valued function
defined on the sample spaceXfThen Eg(X)] = >, g(X)p(X) whenever this
sum is absolutely convergent.

Definition. The mean squared error of a random variabl& with respect to a
constanu is E[(X — u)?].

Example. Consider a B(30.8) random variable. If we choose as its ideal value
u = 2, then the mean squared error calculation would go as follows:

X pX) (X-2P (X-2PpX)

0 | 0.008 4 0.032

1 | 0.096 1 0.096

2 | 0.384 0 0

3 | 0.512 1 0.512
total 0.64

We need to learn a bit more about the expectation of a function.
Theorem (expectation is a linear operator)For X a discrete random variable;

(i) If aisconstant, then E(a) = a.
(i) E[ag (X)] = aE[g(X)] whenever the second expectation exists.
(i) E[g (X)+h(X)] = E[g(X)]+ E[#(X)] whenever theright-hand expectations
exist.

PrOOF. ()E[a] =) ,ap(X)=a) ,p(X)=a-1=a.

(i) Elag (X)] = X_, ag(X)p(X) = a }_, g(X)p(X) = aE[g(X)].

(i) E[g(X) + A(X)] = >, [e(X) + h(X)lp(X) = >, s(X)p(X) +
> h(X)p(X) = E[g(X)] + E[r(X)]. O

One important case of linearity is that @ a) = E(X) + a, applying (iii)
and then (i) above. If there is a fixed cost every time we perform an experiment,
the average cost is just that fixed cost, plus the average of the part of the cost the
varies by chance.

We squared the distance from the reference point when defining a mean square
error in order that the result be a positive, or at least not a negative, number, to
match our idea of a distance. Clearly, the average of positive numbers should be
positive; and by staring at the definition we see that this is true for expectations:

Proposition (expectation is a positive operaor (iv) For g(x) > 0, E[g(X)] >
0.

This must be, because all the terms in the sum are at least zero. An operato
that is a linear operator and also meets this proposition is calbeditive linear
operator.
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6.6.2 \Variance

We will use these facts about expectations to extract some information about meat
squared errors. An obvious limitation of mean squared errors as measures of th
variability of arandom variable is that they depend on your choice of ideal reference
point, . As we did with samples (see 2.4.2), we look foniaimum possible value

of the mean squared error. This would be a plausible measure of the uncertainty
or variability, inherent in that experiment. In this case, we make the following
definition:

Definition. Thevariance of a random variabl& is the minimum value among
all possible mean squared errors with different cengeis is written Var(X).

Obviously, this was inspired by tleample variance. Let us assume th¥thas
a variance, and that there is a numpesuch that Vark) = E[(X — r)?]. Let us
try to learn something about First consider any other reference painThen by
definition, Var(X) = E[(X — 1)?] < E[(X — v)?]. Now add and subtragt inside
the square on the right-hand side of the inequality:

E[(X —v)?] = E[(X =+ —)?] = E[(X — 1)?+2(u —nue)(X — ) + (1 —v)?].
Now we use the linearity properties of the expectation established earlier to get
E[(X — V)? = EI(X — 1)’ + 2( — v)E(X — 1) + (1 — v)*.

Comparing this to the equality above, we discover that for any valugwé must
have

20 —V)E(X — )+ (n —v)? > 0.

What abouix would make this so? The second term is no problem, but it looks as
if the first term could be of either sign and any size. However, ¥ E( ) = 0,

then the inequality is certainly always true, and this happens wherE(X). We

have concluded that the minimum value of the mean squared error, which we now
call the variance, measures deviations from the expected value. To summarize:

Proposition. Let u = E(X). Then

(i) for any number v, E[(X — v)?] = E[(X — n)?] + (1 — v)? solong asthefirst
expectation exists for some v. As a consequence,
(i) Var(X) = E[(X — n)?] (since the previous equation shows that it must be the
minimum value of the mean squared error), and
(i) Var(X) = E[X?] — E(X)? (by letting v = 0).

We will call (iii) the short formula, since it often shortens our calculations.

Example. In the B(3,0.8) case abovegy = E(X) = 2.4. We compute EX?) =
6.24; therefore, Var(X= 6.24— (2.4)? = 0.48 (see Figure 6.1).

It is worth noticing that Var{) = E(@?) — (a)?> = a®> — a® = 0. That is, a
guantity that does not vary has no variance. Also,

Var(X +a) = E{[(X 4+ a) — E(X + a)]?} = E{[X — E(X)]?} = Var(X),
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8
6
4
y
2
&~ Variance
0 1 2 4 3
n Y mn

FIGURE 6.1. Mean squared error and variance

since thes's cancel. That is, adding or subtracting a constant amount to a random
variable has no effect on its variability, as we would have hoped. Furthermore,

Var(@X) = E(@®X?) — E(aX)? = a?E(X?) — [aE(X)]? = a?[E(X?) — E(X)?]
= a®Var(X),

a somewhat less intuitive fact, to which we will return. These are important enough
to summarize:

Proposition (properties of the variance).

() Var(a) =
(i) Var(X + a) = Var(X).
(iii) Var(aX) = a®Var(X).

6.6.3 Variances of Some Families

We hope to find general formulas for the variance of whole families, for example,
the binomial. LetX be B, p). Try the inductive method. We might use the short
formula, for which we need to calculate

E(X?) = Z X?

Unfortunately, only one of th&’s cancels, and we are left with a bit of a mess.
After a small flash of ingenuity, we calculate instead

n! e
m X(l— p) X,

E[X(X — 1)]_ZX(X Dy

( X)' X(l_ )an
n |

n: n_
B émpx(l— oy,
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As we did for the expectation, we substitite= X — 2:

n—2

E[X(X —1)]=)_

Y=0

n!

Y'(n — 2 — Y)I p2+Y(1 _ p)n727Y

n—2 —2)
== 0P ey P =l =

since the second sum covers all probabilities fora B@, p) variable. But then,
E[X(X - 1)] = E(x?) - E(X),
o)
E(X?) = n(n — 1)p* + np = (np)* + np — np?,
and we conclude that
Var(X) = E[X?] — E(X)? = np — np? = np(1 — p).
Proposition.

() If X isB(n, p), thenVar(X) = np(1 — p).
(i) If X isPoisson(A), then Var(X) = A,
(iii) If X isNB(k, p), then Var(X) = kp/(1 — p)>.

Parts (ii) and (iii) are exercises, which should be done by the same method. It
is possible to find the variance of hypergeometric and negative hypergeometric
random variables by the same technique, though we will develop another, perhap:
simpler, method shortly.

Though mean squared error and variance are very important concepts, they hav
little intuitive meaning to most of us as measures of the uncertainty in a random
variable. For one thing, they are in units of the square of the original measurement.
If the random variable is in dollars, its variance is in dollars-squared, whatever that
means. We therefore find it useful to have the following definition;

Definition. The square root of a mean squared error is calledamean-square
(rms) error. The square root of the variance is calledtiiedar d deviation, often
denoted byy.

This definition explains the common convention of denoting a varianee’by
Note that this is like calling the sample variandeand the sample standard de-
viation s. From the corresponding fact about the variance, we discover by taking
square roots that,y = |a|ox. This means that the standard deviation is a measure
of variability in the same units a%.

Example. If | toss a fair coin 100 times, | presume that the number of heads
observed is B(10.5). The expected number of heads is, of counge= 50,

and the variance igsp(1— p) = 25. This has little flavor, but the standard deviation

is 5 heads. We might think of that as a typical deviation about the expectation, so
that 45 heads would not be unusually small, and 55 would not be unusually large.
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6.7 Bernoulli Parameter Estimation

6.7.1 Estimating Binomial p

The families of random variables in this chapter of course become more interesting
when we want to learn the values of unknown parameters.

Example. You are a pollster and are hired by a candidate for governor to find
what proportion of the likely voters in a large state would currently favor her for
governor. You sample 200 voters, randomly selected from the pool of likely voters,
and 107 favor her. What can you say about her actual statewide support?

First, we will assume that we have drawn few enough voters that we may safely
pretend that we are sampling with replacement (see the exercises for the sorts ¢
conditions we must meet). So a plausible model for our experiment is that 107
turned out to be a value from a B(206) random variable, where the unknown
is the probability that a random voter favors our candidate. The valpei®the
most important question we are likely to be asked. As in the last chapter, we might
as well let a standard estimate be the one suggested by matching expectation t
observed valueX ~ E(X) = np, sop = X/n. We will see sounder reasons why
this is a good idea in later chapters. Meanwhile, we note without astonishment
that it matches the standard estimate, the sample proportion, from Chapter 1 (se
1.7.1).

In our example, we estimate that a voter will favor your candidate with prob-
ability p = 0.535. The next important question is, How close to the truth is this
likely to be? It is, of course, itself a random variable, so

X 1 1- 1-
Var(ﬁ):Var()ZZVar(x):np( 2p):p( p),

n n n n
from what we have learned about variances. Then the standard deviatipe-is

\/ @ Incidentally, the standard deviation of an estimate of a model parameter
is often called itstandard error. In (2.4.2), we mentioned that a rule of thumb for
capturing much of the range of variation of a data set was an2erval, which
deviated up and down by two sample standard deviations from the sample mean
For random variables, particularly those that estimate quantities of interest, we
define a corresponding 24sterval; in this case that would be

Lo PA=p) 5o /PR P)
n n

In later chapters we will learn something about how probable it is that the estimate
falls in this range.

Of course, what we have written down is of little use, because once we do the
poll, p is known, butp is still quite unknown. It would be more interesting to move
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things across the inequalities to get the mathematically identical statement

ﬁ—Z'MSPSPA"FZ'M
n n

Now the quantity we want to know is between limits, we hope with high probability.
You are laughing at me, naturally, because you think that | have forgotten that the
unknownp is still in those square-root terms. That is a problem, but since what we
are doing is rough anyway, we do something crude but plausible: Replaceptbese
with their estimated valug, to get the practically useful estimated Znterval

n n

Example (cont.). The probability of a vote for your candidate has the 2-
interval Q4645< p < 0.6055.

That somewhat arbitrary trick of replacing the standard error by its rule-of-
thumb estimate has one reassuring property: Althgughd p are unlikely to be
equal, it happens that the functigfiy(1 — p) changes rather slowly so long as we
stay away from 0 and 1 (see Figure 6.2).

Therefore, it usually does not hurt much to replace the standard deviation by its
estimate. This helps to explain why the experience of statisticians with this interval
has been generally pleasant, despite its several arbitrary features.

6.7.2 Confidence Bounds for Binomial p

We learned in the last chapter how we could go beyond rules of thumb, and make
definite probabilistic statements about the value of an unknown parameter, by
constructing confidence bounds (see 5.6.2). Of course, we can do exactly the sam

/—\
4
3
JPa=p)
2
S

1

!

2 4 6 8

p

FIGURE 6.2. Binomial standard deviation as a functiopof
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thing for the p parameter in a binomial distribution. The one problem here is
that earlier we used the formula for the cumulative distribution function that we
fortunately had in that case. The binomial cumulative is a messy sum with no
closed form. In the exercises, you will develop a simplified way to compute it;
but even so, the author wrote a little computer program to aid him in doing the
calculations in this section.

To getalower, say, 95% confidence boundgan our polling example, we want
to find at what value the result &f = 107 favorable voters becomes improbable
(at the 5% significance level). For us to decide thé implausibly small, we will
have to decide that was improbably large; that is,

X 200 X 200-X
POx = 1071200 p) = 1 - F108)= Y (*)7) @ -p)
X=107

gets a smalp-value. After a number of time-consuming calculations, | home in
on a value that is barely compatible with the data:

D PX > 107)
0.5 0.179002
0.45 0.009668
0.48 0.068677
0.47 0.038404
0.475 0.051810
0.474 0.0488675
0.4744| 0.050028

If I kept going, | could get as close to 0.05 as | pleased, but this will do. As a
result of my poll, | believe that the proportion of voters favoring my candidate is
p > 0.4744, with 95% confidence. | remember that what this really means is that
before | took the poll, the probability was 95% that whatever lower confidence
bound | set would be a correct inequality.

In this problem, arupper confidence bound turns out to be similarly useful. |
look for the value ofp at which counts ofX < 107 become implausiblgmall,
to conclude after many calculations that a 95% upper confidence bound would be
p < 0.5948.

6.7.3 Confidence Intervals

| am sure that you are tempted to combine our two inequalities, to . 480 <

p < 0.5948; this should tell us to what accuracy we have learned our degree of
political support, with high probability. (It also looks a bit similar to the 23tervall

from the last section.) But we need to be careful: Just what is the probability that
this double inequality is correct? Turn the problem around, and ask the probability
that such an interval would be wrong. Then for the (unknown) true valyg of
eitherX > 107 has a low probability, ok < 107 has a low probability. These
cannot both be the case, so longaas< 0.5 defines a low probability, because
the total of the two probabilities is at least 1. Therefore, either the first or the
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second inequality is false, but not both; the two events are mutually exclusive. We
conclude from our addition rule that the probability that our interval above is false
is 0.05+ 0.05 = 0.10; it is therefore true with probability 0.90. We are ready to
make a new definition:

Definition. Let a random variabl& be observed from a family with unknown
parametep. Let X lead us to reject as too small at a significance lewal for
exactly the value8 < 6, ; and for exactly the values > 6y, let X lead us to reject
6 as too large at the significance levg); anday + o = «. Then we say that
0. <0 <6yisa(l—a) x 100%confidenceinterval for 6.

It seems that the interval above is only a 90% confidence interval.for

Notice that to get a conventional 95% confidence intervalpfoive must find
lower and upper confidence bounds whesealues sum to 0.05. There are obvi-
ously an infinite number of ways to do this. If we wish to be evenhanded about
high and low misses, there are still several possibilities. Perhaps the best way is tc
reason that since we want to pin down the true value as precisely as possible, we
should choose thshortest confidence interval such that for the two significance
levels we havery +« = «. This was not often done in practice, before computers
were universal, because the computations may be a bit laborious.

The most popular way of constructing confidence intervals is simply tg)let
a. = a/2. Inthe example, | proceed just as | did in the last section to find 97.5%
upper and lower confidence bounds, and | conclude tH833 < p < 0.6056
is a 95% confidence interval. Notice that it is amazingly close to thdrgerval
of the last section. It will turn out in a later chapter that this is not a coincidence;
the 2-o rule-of-thumb was invented to be an approximation to a 95% confidence
interval in many important cases.

6.7.4 Two-Sded Hypothesis Tests

We have now seen a case in which we were simultaneously interested in the
probability that a random variable might be surprisingly high and that it might be
surprisingly low. This also happens sometimes in hypothesis testing.

Example. According to standard genetic theory, since brown eyes are dominant
over blue, exactly 25% of the offspring of couples, both brown-eyed and heterozy-
gotic for blue eyes, should turn out to be blue-eyed. You have a simple genetic tes
for heterozygoticity in this case. You will find brown-eyed couples who pass your
test and continue the experiment until you have found 30 blue-eyed offspring of
such couples. Naturally, you expect to find about 90 brown-eyed offspring along
the way; if you get many more or many fewer than this, something has most likely
gone wrong with either your experimental procedure or your genetic theory. It
would be very interesting to discover when things indeed have gone wrong.

A reasonable model here is that the count of brown-eyed offspring should be
NB(30, 0.75). We will set up a hypothesis test, with this as the null hypothesis. But
we will reject it, at significance level, say, = 0.01, if the count of brown-eyed
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children is either surprisingly large (so 0.75 is an unrealistically low probability),
or if the count is surprisingly low (so we will suspect that 0.75 is too high). To
make sure that we will at most 1% of the time make a claim that Mendel was
wrong (if he is indeed right), we follow the simple approach of the last section,
allowing a probability ofx/2 = 0.005 that we will get too high a count, and the
same probability that the count will be too low. We call thisva-sided hypothesis
test.

After some laborious calculations with the aid of my computer, | find that 2 (

146) = 0.00494 and PX < 47) = 0.00477 are the least extreme values | may
use. Therefore, | decide that if | observe at least 146 brown-eyed offspring in the
course of my experiment, or if | observe at most 47, | will decide to reject the null
hypothesis at the 0.01 level of significance. People who do this frequentist style of
reasoning call those conditions for rejection tniical region of the experiment.

If | am the research assistant who actually carries out the experiment and |
observe 130 brown-eyed children, | use the negative binomial probabilities under
the null hypothesis to discover that since this count seems a bit large >P(
130) = 0.02726. But if | know that my boss will be wanting to use a two-sided
critical region, | must admit that he would have been willing to reject the null
hypothesis fosmall values that had similarly low probabilities, too. Sdduble
the probability | calculated, to include these hypothetical low valuesprglue
is 0.0545. With far less work than in the previous paragraph, | know that he will fail
to reject his null hypothesis at the 0.01 level and in fact will (barely) do the same if
his preferred level was 0.05. This convenience is why computer statistics package:
usually report gp-value; you can then compare it to whatever significance level
you had in mind.

6.8 The Poisson Limit of the Negative Hypergeometric
Family*

We diagram some things we have learned about limiting distributions in Figure
6.3.

negative hypergeometric

I

I
/ | \

?
negative binomial | binomial
v
Poisson

FIGURE 6.3. Poisson limit of negative hypergeometric variables
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We have approximated negative hypergeometric probabilities in two very dif-
ferent ways; but under certain similar-sounding conditions we can approximate
each of these cases by Poisson probabilities. The dotted arrow asks, can we the
sometimes approximate negative hypergeometric probabilities directly by Poisson
probabilities?

We proceed as before to look for simplification, whers small compared to
W andb, and these are small comparedso

(x +b— 1)X(W)X(B)b _ ()C +b— 1)X(W)X(B)b
x1(B+ W)t xW(B+ W —Db)(B+ W),
where at the second equality the permutation in the denominator was factored intc

two pieces in order to isolate all the terms that involv@ut our two permutation
inequalities tell us that |(’2‘) is small compared tb andW, then

[bW/(B + W — b)]*(B)»
x!(B + W),

The last two permutations could be approximated using results we already know,
but only at the cost of unnecessarily strong conditic(@)ss{mall compared t@®).
Instead, we work a little harder:

plx) =

p(x) =

Proposition.

e/ k) < (k4 Dim < olm/(k=m+1)
(k)}’fl
PROOF.

(k+l)m_’”1k+l—z_ -
w15 —rg<

=)

<1+ l lm/(k m+l)’
- k—m+1/ —

where the second inequality works because we replaced each term by the large:
term in the product. Similarly,

(k+l)m _mfl k—i 71_m71 / -1
(K)um _E,<k+l—i) _D<1_k+l—i>

0

1_# - >elm/(k+[). O
k41 -

In our problem this becomas®"/(B=b+1) < (B), /(B 4+ W), < e ?W/(B+W),
We can relate the exponents to the expected value, as we did in the binomial an
negative binomial cas@:= bW /(B + 1). After some algebra, we can rewrite our
inequalities as

oo~ PW/(B-b+1)B+1) (B)» < e WV =D/(B+W)(B+1),
“(B+W),
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To guarantee that the complicated exponents are small, we need only know tha
A2/b andA?/ W are small, sinc& + W andB — b + 1 are not far fromB + 1.

Allwe need now is to check that the expression tadtigpower may be replaced
by A = bW/(B + 1). But to compare denominators,

(B+W—b)" W—b—l"'N1
(B+1y B+1 A
so long ascA is small compared tb andW. We summarize our conclusions:
Proposition (Poisson approximation to the negative hypergeometric).

() LetarandomvariablebeN(W, B, b); thenletting A = bW /(B + 1), wehave
p(x) ~ A*/xle~* whenever (3) and A2 are small comparedto b and W.

(i) Asequenceof randomvariablesN(W;, B;, b;) suchthat W; — oo, b; — o0,
and 0 < A = lim;_ o b;W;/(B; + 1) will converge in distribution to a
Poisson() random variable.

Example. A manufacturer sells batches of 1000 capacitors and promises that no
more than 30 are defective. Give him the benefit of the doubt, and assume tha
exactly 30 are bad. You need 50 good capacitors, so you test through a batch unti
you have found 50 good ones. What is the probability that you will find 3 or more
bad ones along the way?

Areasonable model for the number of bad ones is N¢30, 50). You, of course,
calculate PX > 3) = 1— p(0)— p(1)— p(2) = 0.2025. after many multiplications
and divisions. But this seems a reasonable candidate for a Poisson approximatior
sincex? = 2.386 is much smaller than either 30 or 50. Using 1.5448, we find
a Poisson B > 3) = 0.2013 with much less work.

As an exercise, you should find conditions under which a Poisson random
variable is a satisfactory approximation to a hypergeometric random variable.

6.9 Summary

We found some simple approximate calculations for negative hypergeometric
probabilities, which corresponded to experiments iBeanoulli process, inde-
pendent experiments that either succeed (with probabi)ity fail (3.3). The first
Bernoulli-based family we studied was t@ometric family, the count of successes
before the first failurep(x) = p*(1 — p) (2.2). This generalizes to thegative
binomial family, which was the number of successes before a certain nundier
failures have happened, with mass functigi) = (***~) p*(1 — p)* (2.4). The
binomial family, on the other hand, counted successes in a fixed nuirdferials.
Its mass function ip(x) = (Z)p"(l— p)'* (3.2). In either case, if successes have
very low probability, their number may be approximated by Foesson family,
where for average number of successgse had fx) = ﬁ—':e*’\ (4.3).

We learned to evaluate expectations in families like these hintluetivemethod
(5). Then we studied expectations of functions of random variables, including the
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variance o2 = Var(X) = E[(X — n)?], whereu = E(X) (6.2). We were led to
a simple estimate for an unknown binomial paramegter X/n, and to a 2s
interval,

52 |P(1—p) <p<p+2 /p(l—p)7
n n

as arough way of describing how accurately we kipaiw. 1). More careful analysis

led to aconfidence interval for our binomial parameter (7.3). We then developed
two-sided hypothesis tests for cases in which we are interested in surprisingly large
as well as surprisingly small values of our statistics at the same time (7.4). Finally,
to show off how much we have learned about approximation to probabilities,
we found conditions under which there are direct Poisson approximations to the
negative hypergeometric family (8).

6.10 Exercises

1

In Exercise 19 of Chapter 5, there were 12 women and 15 men in a statistics
class who took a test.

a. What is the probability that the highest-scoring woman scored fourth
highest overall?

b. Recompute your answer using the geometric approximation. Was the
geometric approximation appropriate here? Is the answer close?

. lam going to roll a balanced die until | get three sixes. What is the probability

| will have rolled the die exactly 12 times?

a. Derive a closed formula (no summation symbols as) for the cumu-
lative distribution functionF'(x) = P(X < x) of a geometricg) random
variable.

b. The probability of snake eyes on rolling a pair of dice j8@. | can keep
rolling until | roll snake eyes. What is the probability that I will roll no
more than 25 times?

. You have invested in an oil exploration company that drills six oil wells a

year. You estimate that the probability of striking oil is abo &t each well.

Of course, you want to be there when the first well strikes oil. Unfortunately,
you will leave the country on sabbatical for one year, starting one year from
now (and returning two years from now). What is the probability that you

will be in the country for the first strike?

. | am told at the beginning of a mushroom-hunter’s guide that 28 of the 96

species described are good to eat, but the guide is not organized that way. |
want to learn about edible mushrooms, so | decide that on my first day of
study, | will read about species at random until | have read articles about 3
edible species.
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a. What is the probability that | will have read about at most 4 inedible
species?

b. Now redo the calculation, using the negative binomial approximation. Is
that approximation plausible here? How close is your result to the exact
answer?

The owner of a stable of racing cars knows that there is a 14% chance that the
car she enters will be wrecked in a race. She will have to stop entering races
for a while to rebuild her cars after she has wrecked three of them.

a. What is the probability that she will have entered cars in 10 races at the
time she has to stop?

b. After 11 races, she finds that she has had two cars wrecked. What is the
probability that she will still be entering cars in races after a total of 16
races?

| need to hire 5 new programmers for my software development group. In
my experience, approximately 30% of applicants will be satisfactory, and any
satisfactory applicants whom I interview | will hire immediately. What is the
probability that | will hire my fifth programmer after 1& fewer interviews?
Assume thaB; — oo and mvf& — p asi goes to infinity, where & p < 1.

Show thatW; — oo.

Prove thaei+1() < k=D < (),

Your Halloween bag holds 30 chocolates and 3 caramels, thoroughly mixed.
You eat them one at a time (over several days, of course) until you have eater
20 chocolates.

a. What is the probability that you have eaten 2 or more caramels?
b. Redo this problem using an appropriate approximate technique.

Approximately 20% of job candidates turn out to be skilled in the use of a
certain spreadsheet program, but you do not know in advance which ones will
be. You interview 5 candidates picked at random for the job.X dte the
number interviewed who are skilled in using the spreadsheet.

a. What is the probability that all your candidates will be skilled with the
spreadsheet (that = 5)?

b. What is the probability that at least one candidate will be skilled with the
spreadsheet (that > 1)?

You and a friend flip a fair coin every week; heads he buys you a lottery ticket,
tails you buy him one. The lottery has a chance of 20% of paying off. What
is the chance you will win exactly one lottery payoff in the next six weeks?
There are 160 people on the voting rolls of a small town. A jury is selected
by picking 12 different voters at random. In the next year, 10 juries will be
selected; all voters are eligible to be on every jury, whether or not they have
served previously. You are a voter in this town. What is the probability that
you will serve on exactly two juries in the next year?
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Show reversal symmetry for the binomial family by comparing the probability
mass functions.

What is the probability that when you roll a die 12 times, you will get more
than 2 aces (one pip)? Now roll a die until yéail to get an ace 10 times.
What is the probability that you will get more than two aces along the way?
The probability that a baby will be a boy is 0.54. A family will keep having
children until they have 2 boys. What is the probability that they will have
no more than 3 girls? Another family will keep having babies until they have
four girls. What is the probability that they will have more than one boy?

To study arare, large species of starfish, you will make a series of dives during
one day’s work, during each of which you will try to bring up a starfish. Your
chance of success on a given dive is about 15%. You imagine the success o
each dive to be independent of the others.

a. If each day you dive until you get a starfish, what is the probability, on a
given day, that you require 4 or more dives?

b. In the next week of work (6 days), what is the probability that on exactly
3 days you will require 4 or more dives to get your starfish?

96% of students usually pass the introductory statistics final exam. Assume
that they all have the same chance and perform independently of one another

a. What is the probability that 78 or more in a class of 80 will pass?
b. Using a good approximate technique to simplify the calculation, redo (a).
Compare your two answers.

Approximately 0.8% of oysters unexpectedly contain a jewelry-quality natu-
ral pearl. You have to provide 1000 oysters from an oyster bed to a restaurant,
but if you find a pearl, you will keep the pearl and throw away the oyster. What
is the probability that you will find 5 or fewer pearls? Calculate the answer
by an exact calculation of an appropriate model and by a good approximate
calculation.

98% of clover plants have three leaves; the rest have four leaves. You searct
a field until you find 3 four-leaf clover plants.

a. What is the probability that you will find at least 150 three-leaf clover
plants along the way?

b. Redo the calculation in (a) using a good approximate method. Why do
you expect it to work well?

A certain fire station gets an average of five alarms per day. Assume that eact
of the very many different possible causes of alarms are independent of one
another. The chief considers it a busy day if the station gets three or more
alarms.

a. What is the probability that a given day will be busy?
b. In a seven-day week, what is the probability that no more than five days
will be busy?
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. Use the inductive method to deriveX)for the NBk, p) random variable.
. For the random variable of Exercise 21 in Chapter 5,

a
b.

compute the mean squared erropofvith respect tqu = 3;
compute Vark) andoy.

. Use the inductive method to find Va&ff whenX is

a
b.

Poissont).
NB(k, p).

. Find E(1/(X + 1)):

a
b.

for X a negative binomial NB{, p) random variable.
for X a PoissorX) random variable.

Your expressions should have no summation signs oy iy them.

a
b.

Let X be a geometrigf) random variable.

Find E(Z).

In a certain gambling game, you roll a die (six sides) repeatedly until you
fail to get a five. You start with $1, and you double the amount of money
you have each time you get a five. On the average, how much money will
you have when the game is over?

A bacterium divides into two exactly one minute after an experiment starts,
the two bacteria each divide exactly one minute later, and so forth, with all
bacteria dividing at each minute. You will use a random number generator
immediately after each minute has passed to decide whether or not to look
in the microscope. The probability that you will look each time is 0.4,
and each decision is independent of the others. On the average, how many
bacteria will you see the first time you look?

. Find a method-of-moments estimate for the probability of sucpees

an NB, p) random variable.

. You are constructing a mailing list for the Citizens Party in your precinct.

You visit voters at random until you have found 100 Citizens Party vot-
ers. On the way, you encounter 141 voters for other parties. Estimate the
proportion of Citizens Party voters, and constructa @verval for your
estimate.

A manufacturer of brake drums claims that only a very small percentage of

their products are delivered with cracks. You maintain a large truck fleet and
discover that the 75th drum you buy from them is cracked (though no previous
one was).

a.

b.

Find a 99% upper confidence bound for the probability that a given brake
drum is cracked.
Construct a 95% confidence interval for the probability that a given brake
drum is cracked.
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You are evaluating the balance of a die for use in gambling by counting the
number of times a one comes up. You will use atwo-sided test, atth@.05
significance level. Out of 300 rolls, one comes up 39 times. Do you reject the
hypothesis that it is a balanced die?

6.11 Supplementary Exercises

30.

31.

32.

33.

35.

To study the life spans of two species of mosquito, you introduce 400 newly

hatched members of species A and 150 of species B into a terrarium. A
colleague believes that species B lives longer, but you suspect that they are
about the same. If you waited until even the few Methuselahs among them
died, the experiment might take a long time, so you decide to stop when 390
of species A have died.

a. If the two species are equivalent, what is the probability that at most 145
of species B will be dead?

b. Do a good approximate recalculation of this probability, using only the
proportions of the species in the terrarium, and not their total numbers.

Hint: Counting living specimens is just as good as counting dead specimens.
If () is small compared t&, and(}) is small compared t8, then what can

you say about the size ¢t}”) compared to¥ + B?

The expectation of the limit may not be the limit of the expectation.
Define a random variabl&,, with the probability mass functiop(0) =
(n—=1)/(m + 1) andp(i) = 2/(n(n + 1)) fori =1, ..., n. Compute EX,).

Now find the random variabl& that is the limit in distribution of theX,, as

n goes to infinity. Compute B{). What do you conclude?

There are known to be 200 adult black bears living in a certain section of forest.
You capture 10 of them at random and implant a miniature data recorder under
the skin of the neck. A month later, you set out to find some of your recorders.
If you stumble across one of your bears, it is easy to retrieve the recorder but
a bear without a recorder will be very difficult to catch and check. Therefore,
you assign yourself the task this week of checking bears at random until you
have found 80 who do not have recorders.

a. What is the probability that you will find exactly 3 bears who do have
recorders.

b. Recompute (a) using a plausible approximation. Is your approximation
justified here?

. Consider a hypergeometric W(+ B, W, n) random variable in whichw

andB are very large compared #o Find a simple approximation te(x) that
uses the proportion of white marbles= W /(W + B) instead ofW andB.
Does this approximation look familiar?

| am interested in a hypergeometric random variabl&H{ B, W, n), in
which the total numbeW + B of marbles is large, the total numbethat |
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remove from the jar is large, and the number that remain in the jar after the
drawW + B — n is large, but the number of white marbl8s and therefore
also X, is much smaller. Derive an approximate formula for the probability
mass functiorp(x) in which you do not mentio® or n, just the proportion

of marbles (which of course equalg(W + B)) to be removed from the jar.
Under what conditions would you expect your formula to work?

The registrar tells you that there are 8 National Merit Scholars among the 200
students in a freshman chemistry class. On the Friday before the UVa game
only 140 students show up for class.

a. If the scholarship students behave pretty much like everybody else, what
is the probability that 5 of them are in class on that Friday?

b. Now use Exercise 35 to solve the problem approximately, and compare
this to your exact answer.

In a small town with 114 registered voters, 39 are registered as Democrats. A
polltaker interviews 10 voters chosen at random. (a) What is the probability
that more than three will be Democrats? (b) Is the approximation in Exercise
34 plausible here? Calculate it and compare.

Derive a formula for the probability that X is B(n, p), thenX is aneven
numberHint: Expand p — (1— p)]” and [p + (1 — p)]”, using the binomial
theorem from high-school algebra.

You need 100 perfect ball bearings for a particularly delicate application. In
your experience, your vendor provides ball bearings that are perfect 97% of
the time, so you purchase 105 bearings.

a. What is the probability that you will get enough perfect bearings?
b. Redo (a) using an appropriate approximate method. How close is your
approximation?

. Prove the theorem of the Poisson approximation to the negative binomial.
41.

10% of people in America are left-handed. In order to evaluate a new trackball
designedforright-handers, l interview Americans at random until | have found
100 right-handed people for my study.

You want to study how the trackball should be modified for left-handers; so
you will work with the left-handed people that | encounter while finding my
sample of 100 right-handed people.

a. What is the probability that | will find fewer than 5 left-handers?

b. Since there are relatively few left-handers, a simplified approximate cal-
culation may be appropriate here. Use it to calculate an approximate
probability that | will find fewer than five left-handers.

Your answer will be quite a bit less accurate than most of our approximate
calculations have been. Explain this fact.
a. ForaB, p) random variable, find a simple expressiondt)/ p(x —1),

and use it to invent a recursive method for computitg), starting with

p(0)=(1-p).
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b. Derive a similar procedure for computing NB({) and Poisson()
probability mass functions.

. Use the inductive method to check our expression for)E@X the HW +

B, W, n) and for the NW, B, b) random variables.

. Modify the computer generated random variaBlén Section 5 as follows:

let W = Z whenZ is odd, and letW = —Z whenZ is even.

a. Compute the usual expression for E(W¥_,, w Wp(W). (You may need
the help of your calculus book.) In particular, it has a finite sum.

b. Showthaty_,, ,, Wp(W) is not absolutely convergent (see 5.5.2). There-
fore, W has no expectation. (You might then find it entertaining to generate
a large number of values &%, and notice that indeed its average never
seems to settle down anywhere.)

The logarithmic random variableX with parameterp has probability mass
function p(x) = p*/(xlog[1/(1— p)])for X =1,2,3, ...

a. Show that this really is a random variabldifit: You may have to look
up a fact in a good calculus book.)

b. Find closed formulas (no summations or omitted terms) for the expectation
and variance oX.

The third central moment of a random varialdds given by E[X — u)3],
where EX) = u. Let X be a binomial B(n, p random variable. Compute

the third central moment of .

Inthe last year, 57 cases of a very rare cancer were reported at a major cance
center. Assuming that these cases appear annually following a Paisson(
law, construct a 98% confidence interval forCompare it to a 2-dnterval.

. Find conditions under which a Poisson random variable is a satisfactory

approximation to a hypergeometric random variable.
Of 1000 entering freshmen at a small university, 28 have used heroin at least
once.

a. In a confidential survey of a random sample of 50 freshmen, what is the
probability that at least 3 will have used heroin?

b. Redo (a) approximately using the method of Exercise 48. Was that method
appropriate here?



CHAPTER 7

Random Vectors and
Random Samples

7.1 Introduction

Statistical experiments usually involve more than one measurement. We have al
ready discussed replications under the same conditions, which we carry out sc
that we can allow for random error. More than that, though, we need to look at
the several different aspects of each experimental subject that we may conside
important. For instance, in a diet experiment we should record the heights as well
as the weights of the participants, in order to put each weight in perspective. A
poll would record the numbers of supporters of several different candidates. An
ornithological survey might record all three coordinates for the location of a certain
kind of bird’s nest (east—west, north—south, height above the ground).

The several distinct numbers acquired during an experiment are called a
dom vector, because we think of the various values as coordinates in an abstract
multidimensional space, whether or not they actually represent positions. We will
develop tools for studying the interdependence of the different coordinates of a
random vector. One important special case, where the various numbers represel
attempts to measure the same thing in repeated, independent experiments, is calle
arandom sample. This idea will allow us to treat sample means as random vari-
ables in themselves. We will then explore how sample means get ever closer tc
the true expectation as a sample grows. Finally, we will look at how an uncertain
parameter and a random variable that depends on it give information about eact
other.
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Time to Review

Chapter 2, Sections 3, 4,7
Chapter 4, Section 8
Chapter 5, Section 4
Multiple integrals

7.2 Discrete Random Vectors

7.2.1 Multinomial Random \eectors

Experiments often measure several numbers at a time; for instance, the weathe
report from a certain time and place mightinclude the temperature, humidity, baro-
metric pressure, and wind velocity. These are, unfortunately, not very predictable
in advance, so we might treat them as random quantities. Furthermore, it is waste
ful just to report the separate measurements as if they were different experiments
For instance, the humidity has very different meaning in different seasons, since
the capacity of air to hold water vapor rises with temperature. Therefore, we keep
our random numbers together and interpret the different quantities in light of each
other.

Definition. A random vector X is a probability space whose outcomes are
vectors: ordered-tuples of real numbers.

Example. A pollster wants to know whether the voters of a state favor candidates

Smith or Jones (or neither) in the race for governor. Unbeknownst to the pollster,
40% favor Smith, 50% favor Jones, and 10% favor neither. If she collected a simple
random sample of voters to interview, small enough that she could pretend it was
with replacement and each interview was independent, how accurate would hel
sample proportions be?

The answer lies in a family of random vectors that generalizes the binomial
family:

Definition. Consider a sequence of identical, mutually independent random ex-
periments in which two or more outcomes are possible. Let the probabilities of
the outcomes, numbered 1, 2,.3,, k, be p, p2, ..., pr, Wherep, > 0 and
Zle pi = 1. If we performn such experiments, let; be the number of experi-
ments in which théth outcome was observed. The random vedtor (X;)7 is
called amultinomial vector, M(n, p).

In our example, if the pollster samples 100 voters, the result might be something
like 43 for Smith, 53 for Jones, and 4 for neither. Ths= (43, 53,4)7 is a value
of a multinomial M(1000.4, 0.5, 0.1) random vector.

The first important fact we notice about such vectors is that the counts in the
categories must sum to the total number of trials (each subject gets counted exactl
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once). Thatisy_*_, X; = n. This means that we can always solve for the count in
some category, suchag =n — Zf.‘;ll X;. In our example, that “Other” category

is presumably of less immediate interest, s& i the count of Smith voters, and

Y the count of Jones voters, then we can quickly find the count of Other voters
100— X — Y. Therefore, three-category multinomial vectors (catiébmial, of
course) may be thought of as vectaks )7 in two-dimensional space. Generally,
then, multinomial vectors live in &(— 1)-dimensional vector space.

Binomial random variables, you might notice, are really a special case of
multinomial vectors, withk = 2. FurthermoreX, the count of Successes, is a
one-dimensional vector (2 1), and the count in its Other category, Failures, we
well know to ben — X. Thenp = p; and 1— p = po.

7.2.2 Marginal and Conditional Distributions

Imagine that the pollster was hired by the Smith organization, so Xhahe
number of Smith voters, is itself a random variable of interest. If we ignore the
distinction between Jones and Other voters, then our subjects have been split int
the Smith voters and people who will not vote for Smith. We concludeXhlay

itself is a binomial B(1000.4) random variable. More generally, any multinomial
coordinateX;, thought of in isolation, is a B(, p;) random variable. We have a
name for this thinking:

Definition. The probability space determined by the values of a single coordinate
X; of arandom vectoX is called amarginal random variable.

Proposition. If X isM(n, p), then X; ismarginally B(n, p;).

Now we want to understand the connections among different random coordi-
nates. First, what is the probability that the whole vector takes on a fixed value?
For example, how probable was it th&it = 43 andY = 537? Using the mul-
tiplicative rule for the probability that two things both happenXP£ 43 and
Y =53)=P(X =43)PY = 53| X = 43) (where the common condition that we
omitted was that our vector was M(10@4, 0.5, 0.1)). We get the first probability
from knowing thatX is binomial. As forY, once we know thak = 43, we can
simply discard all the Smith voters and think of ourselves as interviewing the 57
voters who do not favor Smith. We are asking the probability that 53 of the 57 are,
independently, Jones voters. But the probability that any one of these is a Jone:
voter is P(Jones not Smith)= (1934) = 2. So theconditional random variable
is again binomial, but now with = 57 andp = g. We are able to compute the
probability of the complete poll results by multiplying two binomial probabilities
together:

P(X = 43,Y = 53)= [(i%,O) 0-4430'657} [(2;) <Z>53 (fliﬂ

= 0.066729- 0.019382= 0.0012933.
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Let us look for the general formula for such trinomial probabilities. First, we
need some notation:

Definition. A random vectorX is discrete if its sample space is countable. Its
probability mass function is the real-valued functipfx) = P(X = x) defined on
its sample space.

Obviously,p(x) > 0and)_, p(X) = 1. Thissumisreally amultiple summation
over several coordinates, which | have written more compactly as a sum over all
values of a vector. In our exampjg(43, 53) = 0.0012933. The sample space
of a multinomial random variable is obviously a finite set of possible vectors
of nonnegative integers (each coordinate is an integer between &) asal it is
countable. We write the marginal probability mass funcpan(x;) = P(X; = x;).

For the trinomial case, we can write one of the probability mass functions for a

conditional random variabley x(y|x) = P(Y = y | X = x). For more than

two coordinates, you can see that there are a great many possible marginal an
conditional distributions, depending on which coordinates you know and which

ones you do not care about.

For a trinomial Mg, p,q,1 — p — ¢) vector (X, Y)”, we reasoned thax
is binomial B(n, p and that the conditional random varialife | x must be
B(n — x, q/(1 — p)). Therefore,

p(x,y)
= px(x)pxy(y]x)

e (0 (e

There are a two nice cancellations, after which we regroup to get
I

plx,y) = p¢a(l—p—q) .

xlyl(n —x —y)!
This form is quite suggestive: The first partis a (surprise) multinomial symbol (see
3.3.4); the second contains the probability of each outcome to the power of the
number of times it happens. We generalize to get the following:

Proposition. A multinomial M(n, p) vector has probability mass function

k
n o
X) =
ped = () TT»

ProoF. Imagine a generalization of a Bernoulli process in which each indepen-
dent trial can fall in any one df categories. Consider a stringmtrials. If there
arexy, xo, ..., x; outcomes of each of the types, then the probability of that par-
ticular string is]‘[f.‘:l p;'. But from (3.3.4) we have already counted the number

of sequences that would lead to a given vector of counts; it was the multinomial

symbol
n! n n
xalxol-oxd T \opxo-oox ) \x)
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We are done. O

When the sample space is finite, we can put the mass function for a
two-coordinate random variable (callbibariate) in a table.

Example.

x\y 0 1 2 3 pxl)
0 [0.008]0.060] 0.150] 0.125] 0.343
1 [0036[0180| 0225 0 | 0.441
2 [0054[0135] 0 0 | 0.189
3 [0027] © 0 0 | 0.027
py(y) [0.125] 0.375| 0.375| 0.125| 1.000

Notice that marginal probabilities fof are obtained by taking row sums; also,
marginal probabilities fol are column sums. (We see why the probabilities of
individual coordinates are called marginal; they appear in the margins of the ta-
ble.) This is because, for example, to get the probability that 1, we add the
probabilities for the cases whese= 0, 1, and 2. We can summarize this as
px(x) =Yy p(x, Y). Generally, to find any marginal probability mass function,
we sum over the probabilities for all possible values of the other coordinates. Also.
the grand total in the lower right corner verifies that our mass function sums to 1.

To find conditional probability mass functions, we just use the formula for
introducing a condition (see 4.4.3), which becomes, for examplg,(x|y) =

‘;‘;‘(’5)). This is just finding what proportion a table entry is of its column total, as

pxiy(11) = I;(Yl(’ll)) = %gg = 0.48.

Combining these last two expressions, we can writg(x) =
>y pr(Y)pxiy(x|Y). That is, the marginal probabilities for one variable may be
computed as an appropriate weighted average of its probabilities conditional on
the other variable. We have seen this before in another guise—it is the division into
cases formula (see 4.6.2) for discrete random variables. We shall have importan
applications for this shortly.

Writing tables for discrete random vectors raises a technical question: If the
sample space of your random vector is@irs of nonnegative integers, such as
(10,17), (of which there are an infinite number), is the event countable (so that
we really have a discrete random vector)? We use the integers to do the counting
and surely there are many more pairs of integers than there are integers. Howeve
it turns out the pairs are indeed countable, as you can see, for example, from the
counting scheme

0,00 — (0, 0,2 - (0,3)
U 1 \

1,00 <« (@13 (1,2) 1,3)
\ t .

20 - 21 - (22 (2,3)
U

(B0) « (31 <« (B2 <« (33
!



214 7. Random Vectors and Random Samples

where (Q0) is the first outcome, (@) is the second, (1) is the third, (10) is
the fourth, and so on. Every pair gets counted eventually. This is essentially the
reasoning Georg Cantor used to establish that the collection of all rational numbers
p/q is countable.

For random vectors with more coordinates, there are similar counting schemes
and itis generally true that a finite-dimensional random vector whose sample space
for each coordinate is countable, is itself countable.

7.3 Geometry of Random Vectors

7.3.1 Random Coordinates

Several of our examples of geometrical probability had outcomes on multidimen-
sional objects (such as dart boards); so the coordinates of these outcomes at
examples of random vectors, but no longer discrete. The probability of an out-
come landing in an event A, P(A), we now writeXPE A). If we are lucky, we

have amultivariate density function f(X), which we may integrate to compute
these probabilities: X( € A) = [[[, f(X)dX (if we happen to have three ran-
dom coordinates). You can see that it is time to reviatiple integralsfrom your
calculus course, if this notation is unfamiliar.

Example. In Chapter 4 (see 4.2.1) we proposed a circular dart board D of radius
1 and darts thrown from far enough away that if they hit the board, they seemed
equally likely to hit anywhere. Put the origin of a coordinate system at the center
of the board; a dart hit then gives us a random vector)” . We concluded that

if we had a region AC D whose volume can be computed, theXR{ A) =

% = 1V(A). Expressing this as an integral[ &, Y)" € A] = [/, 2dax dy.

So in this case the density X, Y) = % for (X, Y)T e D.

Generally, the Cartesian coordinates of a uniform geometric probability space
over some region have a constant density.

When we investigated the probability of landing in a vertical strip, we reduced
the problem to the random behavior of theoordinate. This, then, had what we
now realize was anarginal density fx(x) on (—1, 1). What might the conditional
behavior of they-coordinate be if we know the value &f = x? That information
pins the location of the dart down to a vertical line segment (the dotted line in
Figure 7.1):

Since originally the dart was believed to be equally likely to fall anywhere
on the disk, now that its horizontal location is known, presumably it is equally
likely to be anywhere on that segment. Thereforecaizditional density will be
constant over the segment, which goes from +/1 — x2)7 to (x, v/1 — x2)T.
Then the segment is\21 — x2 in length. The conditional density has to be the
constant value that will integrate to 1 over its length, o (y|x)2v1 — x2 =

1. Therefore,fyx(y|x) = Nﬁ. Remember that despite its appearance, this
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~<

Y|x

FIGURE 7.1. Vertical segment of a disk

function is constant over its sample spaee/(l — x2, v/1 — x2); x is a known
value that does not change, whHids still random.

In the discrete case, the connection between the bivariate probability mass func
tion, the marginal mass function, and the conditional mass function was just the
multiplicative law for probabilitiespy (y) px v (x|y) = p(x, y). Notice that in this
continuous examplé (x) fy x(ylx) = 2 1—x2ﬁ =1 = f(x,y). Tosee
that such a formula works all the time, it will be necessary to consider how to get
from the multivariate density to the marginal and conditional densities.

First, ask yourself why you would want to know the marginal density of a contin-
uous random variable? Presumably, to solve problems like “will the temperature be
above freezing tomorrow morning (so that it will not kill my tomatoes)?” Humidity
is an important weather fact, but the simple temperature number is most urgently
needed at the moment. Generally, we want to compute things like P(a<<bX
ignoring Y (our vertical strip, again). Then we would use the marginal den-
sity to solve for the probability b}fab fx(X)dX. If unfortunately we only have
the bivariate density handy, we have to compute instead the double integral
I fab f(X,Y)dXdY .| hope you have finished your review of how to do this. You
will have found that a famous fact, Fubini’s theorem, says that if this integral makes
sense, we may compute it by carrying out the two integrations, one at a time, in
either order. So let us reverse thiendY integrals to geﬁ[f_o"oo f(X,Y)dYldX.

There is a subtlety here: The infinities in the limits stand for the limit¥ ifor

each possible value &f, which is thought of as constant during the integrati@n

(they were £+/1 — x2, /1 — x2) in the example). Now compare this integral to
the one of the marginal density above. We concludefthét) = [°° f(x, Y)dY.
Generally, you can find a marginal density by integrating the multivariate density
over all the possible values of all the other coordinates. You should check that
this works in the dart board example. Now we can use this to define a conditional
density fyix(ylx) = f£(x,)/fx(x) = £(x, »)/(J2, f(x, Y)dY) for any x for
which the marginal density is not zero, by analogy with the discrete case. You
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Y

(% y) X

FIGURE 7.2. Cumulative distribution in a plane

should check as an exercise that this process really yields functions that can b
densities.

7.3.2 Multivariate Cumulative Distribution Functions

The cumulative distribution function (see Chapter 5.4) was a useful tool for dealing
with random variables; there is indeed a generalization for vectors.

Definition. Thecumulative distribution function of a random vector is
F(x) =PX1 <x1, X2 <x2,..., X < xp).

This awkward-looking quantity measures the probability that each random co-
ordinate is at most the specified value. In the two-variable case, this amounts to the
probability of the lower left-hand quadrant in a geometrical picture, Figure 7.2.

As you may remember from Chapter 4 (see 4.8.2), geometrical probabilities
require us to be able to assign probabilities to all the events in a Borel algebra,
which is built out of hyper-rectangles. The vector cumulative distribution function
makes this possible; for example, in two variables,

P{(a, b] x (c,d]|(X,Y)} = F(b,d) — F(b,c) — F(a,d) + F(a, c).

(See Figure 7.3) We took the probability of the large quadrant and subtracted off
the lower right and upper left quadrants, which we did not need. But then we had
subtracted the lower left quadrant twice, so we added it back in. As an exercise, you
should find the corresponding formula for the probability of a three-dimensional
box.
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(b, d)

(b, c)

FIGURE 7.3. Probability of a rectangle

Example. Imagine asquare dart board, with a coordinate system assigned so that
the dart board is the set of coordinates(Dx (0, 1). Then, if the player is so inept
that the dart might land equally anywhere on the board, we see thatfor & 1
andO< y <1,

F(x,y)=PO0<X=<x,0<Y <y»)=V{0< X <x,0<Y <y}=uxy,

since the total area is 1. As a somewhat more difficult exercise, you might find the
cumulative distribution function for hits on our circular dart board.

It is easy to see what a marginal cumulative distribution function would be; for
example, when we have two coordinates,

PX <x)=Fx(x)=Ilim PX <x,Y <y)= lim F(x,y) = F(x, 00),
y—00 y—00

where the last expression is a convenient but informal notation (infinity is not a
number). With more than two coordinates, we can find the marginal cumulative
distribution function for any one variable by simply placing an infinity symbol in
the slot for each remaining variable.

Example. On our square dart board, infinity stands for the largest allowable value
of a coordinate, 1. Therefor&x(x) = x - 1 = x, as we might have expected.

For a bivariate discrete random vector, it is easy to see how to write the cumula-
tive distribution function in terms of the probability mass functid(x, y) =
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> x<x 2y<y P(X,Y). There is a parallel formula for vectors with a density:
Fix,y) = [° J . f(X,Y)dXdY. You should be able to see how to do this
for more than two coordinates.

It should probably bother you that we have provided so far no interesting prac-
tical examples of multivariate cumulative distribution functions. This is not an
accident; these functions have very few direct applications to real-world prob-
lems. They play the role, rather, of a unifying mathematical device: If we know
that wecan define a multivariate cumulative distribution for a proposed random
vector, then we know enough to study any possible behavior of that vector. We
could see this from the fact that we could use the function to find the probability
of any hyper-rectangle, and therefore of any Borel set. In the next section, we will
use these same functions to define independence of random variables, in a wa
that does not depend on whether the vectors are discrete, or whether they have
density.

7.4 Independent Random Coordinates

7.4.1 Independence and Random Samples

Notice that in the square dart board problem, it turned out not to matter for our
guestions about the coordinate, whether or not we knew something aboutthe
coordinate. This sounds familiar.

Definition. X and Y are independent of one another whene¥dr, y) =
Fx(x)Fy(y) for each &, y)T in the sample space of our random vector.

This is because we may simply multiply the probabilities. Intuitively, two ran-
dom variables are independent of one another when knowledge of one has no effec
on our opinion about the other. The coordinates of hits on a square dart board are
examples. As an exercise, notice that this is not true for circular dart boards. The
conceptis important, because it will result, when it applies, in great simplifications
in our calculations.

Proposition. For X, Y discrete and independent and for any pair of valuesin the
sample space x and y, the events X = x and Y = y areindependent; that is,

p(x,y) =PX =x,Y =y) =PX =x)P(Y =y) = px(x)pr(»).

We will leave this for an exercise.

Statisticians often pursue independence when they design experiments. Whel
a measurement is subject to much random error, we try to repeat it a number of
times in hope that the truth will shine through the noise. For this technique to work
well, each repetition of the experiment needs to be as similar as possible to the
others, but not influenced by previous tries.
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Definition. A random sample (orndependent identically distributed (i.i.d.)
sample) is a random vector such that the components each have the same margin
distribution F and they are mutually independent, so thét) = [ ], F(x;).

Example. A particularly ambitious high-school senior takes the SAT test five
times in quick succession, after taking an SAT practice short course. His total
scores were 980, 1040, 990, 1080, and 1000. Test designers believe that there
little improvement due to practice; so we might imagine that these scores are a
random sample attempting to measure the student’s “true” SAT score. We will see
much more of this concept later.

7.4.2 Sums of Random Vectors

Let X andY be the discrete results of two independent experiments, for example,
the costs of each. It is often natural to combine them to create a new variable
Z = X + Y (the total cost). What sort of random variableZi8

In some particular cases, this is easy. Xebe binomial Bg, p), andY be
B(m, p). Then we can imagine that the first is the successasBarnoulli trials
and that the second is the successes in themewitls, all with probabilityp of
success. This works because Bernoulli trials are always independent of each othe
Then the total is the number of successesir-m trials and so is a B(#-m, p)
random variable. You should apply similar reasoning to find the behavior of the
sum of a negative binomial NB( p) and an independent NB(p) variable.

In general, we would have to reason thaZR£ z|Z = X + Y) is the sum over
the probabilities of each pair of values KfandY that sum taz. For example, if
z = 3, we would have to add probabilities for the cases whgee 0 andY = 3,
whereX = 1 andY = 2, whereX = 2 andY = 1, and whereX = 3 and
Y = 0. We might write itp(z) = >_y p(X, z — X), summing over the possible
values ofX, and the corresponding gotten by solvingX + Y = z. If X andY
are independent, then we know that the probabilities factor:

plx,y) =PX =xandY = y) = P(X = x)P(Y = y) = px(x)pr(y).
and sop(x, z — x) = px(x)py(z — x).
For example, leX be Poisson(1) an#l be independently Poisson(w). Then

AX .
X,z2—-X)="—e’' "¢
P 2= X) = e )
Notice thatX cannot exceed, becaus& cannot be negative. The two factorials
remind us of the denominator of a combination, so we multiply and divide by
to get

X
—p

e~ O+ z!
1 XYz —X)!
The second part reminds us of a binomial probability, if oklgnd x summed

to 1. But we can force them to, by dividing by their su;@ﬁl:7 + ﬁ =1.To

X, z—X

p(X.z—X)= A
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do this in the probability formula we need to multiply and divide ByH ©)* =
() O+ )

(e g AN YR
Pz = X) = Z! <X><k+u> <x+u> '

We have managed to write the joint probabilji{z, x) = p(z) p(x|z), where the
marginal distribution o is a Poissori(+ ) random variable, and the conditional

distribution of X givenZ =z is B (z, ﬁ) We summarize

Proposition. Let X bePoisson(1)andY beindependently Poisson (it). Then X +Y
is Poisson (A + ), and X conditioned on observing X +Y =z isB (z, ﬁ)

It is frustrating that this result is so similar to those for binomial and negative
binomial probabilities yet requires a much more complicated argument. This will
be remedied when we develop a probabilistic experiment out of which Poisson
random variables arise naturally, a Poisson process, in a later chapter.

7.4.3 Convolutions

While studying the sums of independent Poisson vectors we found ourselves using
a general argument about discrete vectors: When we are interested in the sur
Z = X + Y, we may compute its probability mass function by summing over
cases that can achieve the given value of the pufr) = >, p(X,z — X). In

cases like ours in whiclk andY are independent, we may factor to gefz) =

>y Px(X)py(z—X). Mathematicians have found this calculation so widely useful
that they have immortalized it in the following definition.

Definition. Let f andg be functions defined on a countable set of real numbers.
Then theconvolution of f andg, written f x g, is a function defined by the formula
fxg(z) =), f(x)g(z — x) for any realz for which the formula makes sense.

We of course are interested in the case whgrand g are probability mass
functions, and we may state what we have learned as follows:

Proposition. Let X and Y be independent discrete random variables. Then the
probability mass functionof Z = X + Y is pz = px * py.

This is handy to know, because mathematicians have learned a great deal abot
convolutions; and now we can borrow from their results whenever we need to
know about sums of random variables.
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7.5 Expectations of Vectors

7.5.1 General Properties

Expectations of functions of discrete vectors work just as one would expect; the
possibilities for functions have simply become richer.

Definition. Let g(x) be a real-valued function defined on the sample space of a
discrete random vector. Then the expectatiorg @ E[g(X)] = >y g(X)p(X)
whenever the sum is absolutely convergent.

Proposition. E isa positive linear operator.

The proof is identical to the one in the single-variable case (see 6.6.1). The
interesting novelty is that we may not be concerned with all the coordinates. For
example, in a poll, we might want to know the expected count for the one candidate
who has hired us to do the poll. This means that the fungfidepends only on
one coordinate. We compute

Ele(X)] =D g(X)p(X) =Y gx) Y p(X)=>_ glxi)px, ().
X Xi X

all X with
Xj=x;
which tells us that we may compute expectations having to do with single coordi-
nates by ignoring the other coordinates and just using the marginal probabilities
for that one.

Example. In the bivariate example given by a table in Section 2,
E(X)=0-0.343+1-0.441+2-0.189+ 3-0.027= 0.9.

In a multinomial experiment, thgh count is marginally binomial, so we know
that its expectation is justp; .

7.5.2 Conditional Expectations

Looking a little more closely at what we actually do to calculate an expectation in
the case of two variables, we have to perform the double sum in some order. If we
choose to sum over first with X held constant on each pass, theg®], Y)] =

> «[Doy (X, Y)p(X, Y)]. But sinceX is constant during the inner sum, we can
exploit our product rule(X, Y) = px(X)pyix(Y | X) to factor out the marginal
probability of X:

E[g(X.Y)] = Z[Z g(X. Y)pyix(Y | X)}PX(X)-
X Y

If you stare at the inner sum for a while, you will see that it looks like some sort

of expectation by itself. For any fixed, known valueXfit is an expectation of

with respect to the conditional random behavioiof
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Definition. For a discrete random vector with coordina?désY and a valuex in
the sample space &f, theconditional expectation of Y given x is

Evix [g(X, ¥) [ x] =D g(x, ¥)pyix(Y | x).
Y

This has all the properties of a simple expectation, of course, because the
conditional probability mass function is really just an ordinary mass function.

Example. If X, Y aretrinomial Mg, p, ¢, 1—p—q), thenY conditionedorX = x
turned out to be binomial B(— x, ¢/(1— p)). But then the conditional expectation
of Y is just the expectation of that binomialyg[Y | x] = (n — x)(¢/(1 — p)).

Now we can write the general expectation as

Elg(X,Y)] = ZEY\x[g(X, Y)| X]px(X)_
X

But now the sum ovek looks like a (marginal) expectation.
Proposition. For X, Y discrete,

E[g(X, Y)] = Ex {Eyx [¢(X, Y) | X]} = Ey {Exy [¢(X, Y) | Y]}
whenever the first expectation exists.

We know that we can always do this because if the first expectation exists, then
the double sum is absolutely convergent. But then we will get the same answer
whatever the order of summation; and that leads to the other two expressions.

Example. ForX,Y trinomial, EQ) = Ex[Ey x(Y|X)] = Ex[(n—X)(¢/(1—p))]-

But X is marginally B(r, p, so E(Y) = (n — np)(q/(1 — p)) = nq after some
cancellation (which we already knew by looking at the marginal distribution of
Y).

7.5.3 Regression

If we manage to observe one coordin&tef a random vector, but nat, we might

be interested in predicting what will be. A plausible prediction would be its
conditional average givel = x, Ey|x[Y | x]. This may remind you offegression
from Chapter 1. Even more, it is analogousdast-squares regression from Chap-
ter 2. To see this, we might reasonably ask what the best possible prediction of
would be in the form of a functiolf = g(x) if we know X = x. Let our criterion

for the best be that we minimize its mean squared erie¢[E — g(X))? | x]
over all possible functiong(x). But the conditional expectation says that we may
do this one value ok at a time. In Chapter 6 (see 6.6.2) we showed that the
mean squared error of a random variable is smallest about its expected value. Wi
conclude that the least-squares predictiofy afs a function ofX is given by its
conditional expectationf = g(x) = Eyix[Y | X]. Therefore, this function is
sometimes called thegression of Y on X.
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The corresponding analysis of variance expression says that for any function
h(x),

Eyix {[Y — h(x)]? | x} =Eyx {[Y — Eyx(Y | )% x}+[Eyx(Y | x)—h(x)]%.

The first term on the right is just the variancelafonce you knowt. In obvious
notation,

Eyix {[Y — h(x)]? | x} = Varyx(Y|x) + [Eyx(Y | x) — h(x)].

This last expression has an interesting consequence. A naive prediction of
(that s, ignoringX) would of course be just its average valug’lE(Substitute this
for h(x) in the expression above to get

Ey|x {[Y — E(Y)]2 | )C} = Vary|x(Y|x) —+ [Ey|x(Y | )C) — E(Y)]2

This has all been done for particular known valuesKofLooking at the overall
process of prediction, we should take expectations of this for all possible values of
X. The proposition in the previous section tells us thafly x (Y | X)] = E(Y).
Therefore, the third term is squared deviation about an average. When we averag
it over X, we get

Ex {[Exix(Y | X) — E()]?} = Varx[Eyx(¥ | X)].
Applying the same proposition to the first term, we obtain
Ex ([Evix {[Y —E(M)]? | X}) = E{[Y — E(Y)]?} = Var(Y).
We combine these into a wonderful fact:
Theorem (conditional decomposition of variance).
Var(Y) = Ex[Varyx(Y | X)] + Varx[Eyx(Y|X)].

Remember this as “compute a variance by taking the average variance over case
and adding the variance of the average by cases.” In the trinomial case (see Sectio
2.2)M(n, p, g, 1— p—q), the variance of is, of coursenq(1—g). The conditional
expectation ot for X = x is (n — x)(¢/(1 — p)); the variance of this conditional
expectation over alk’s is thennp(1 — p)(¢%/(1 — p)?) = np(¢?/(1 — p)). For
the first term, the conditional variance is € x)(g(1 — p — q)/(1 — p)?). Its
expectation isi — np)(q(L — p — q)/(1 — p)*) = n(g(L — p — q)/(L - p)).
Adding our two terms, we obtain(g(1 — p — ¢)/(1 — p)) + np(g?/(1 — p)) =
(ng/(L—p)@A— p —q + pg) = nq(l— q), as the theorem promised.

7.5.4 Linear Regression

Our regression functiog(x) may take a great variety of functional shapes (just
as in Chapters 1 and 2 we touched on the possibility of polynomial regression
models). Notice, though, that in the trinomial example the conditional expectation
of Y turned out to be a linear function &f, so this suggests that linear regression
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between random variables may be particularly interesting here, too. Let us proceec
as in Chapter 2 (see 2.6.1) to find the generally best predictoobthe formy =
u+[X —E(X)]b. Notice that we make it a centered model by subtractirig)Eom
X, as opposed to the sample méean Chapter 1. Now we want to choogeandb
to minimize the mean squared error E[¢ Y)?] = E({Y — u — [X — E(X)]b}?).
You may want to review how we found the corresponding answer in Chapter 2
(see 2.6.1) and note the parallels.

First, assume we knoy and treat’ —[X — E(X)]b as a single random variable.
Then we want to find the value of that makes B’ — [X — E(X)]b — u}?) as
small as possible. But from Chapter 6 (see 6.6.2) we know that the expected value
does it

1w=E( —[X — EX)b) = E(Y) — E[X — E(X)]b = E(Y).

Centering the model at K() allowed it to be simplified.

Now, to find the besb, we must minimize B(Y — E(Y)] — [X — E(X)]b}?).
This is similar to the simple proportionality between vectors that we worked on in
Chapter 2 (see 2.3.2), and we will solve itin a similar way. Because it will turn out to
be very useful elsewhere, we will look at the more general problem of when any two
functionsg andh of a random vectaX are roughly proportional to each other. This
means that for some unknowng(X) ~ bh(X). To find a reasonable, we solve
min, E{[g(X)—bh(X)]?}. A solution would be the numbérsuch that for any other
possible constant of proportionality E{[g (X) — bh(X)]?} < E{[g(X) — ch(X)]?}.
Replacing: by b + ¢ — b, expanding and rearranging terms in much the same way
as when we were finding the variance, we get

2(b — )E{h(X)[g(X) — bh(X)]} + (b — c)°E[A(X)’] = 0.
This will always be true if the first expectation is zero which happens when
E{h(X)[g (X) — bh(X)]} = E[1(X)g(X)] — bE[r(X)’] = O.

This says that the best constant of proportionality is E[#(X)g(X)]/E[h(X)?]
whenever the denominator is not zero.

By lettingY —E(Y) = g(X) andX —E(X) = h(X), we have solved the problem
of finding the linear least-squares regressior oh X, with coefficientgy = E(Y)
and

_ HIX —EXIY —EM)]
E{lX — E(X)]%}

The denominator is simply the variance %f but the numerator we have never
seen before. Since we are reviewing Chapter 2 as we go, we know what the
corresponding quantity was called: the sample covariance (see 2.7.1).

Definition. Thecovariance of X andY is given by
Cov(X, Y) = E{[X — EX)][Y — EM)]}.
Now we can make the following assertion:

Proposition. Theleast-squareslinear regressionof Y on X, Y = uw+[X —E(X)]b,
isgivenby u = E(Y) and b = Cov(X, Y)/Var(X) whenever Var(X) > O.
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755 Covariance
Notice that

E{[X —EMIY — EM)]} = E(XY) — E[E(X)Y] — E[YE(X)] + E(X)E(Y)
— E(XY) — E(X)E(Y),

which is much like the short formula we got for the variance.

Example. In the bivariate example given by a table pfin Section 2, EXY)
should be a sum of 25 terms; but in all but three cases, ekharY or p is zero.
Thus,

E(XY)=1-1-018+1-2-0.255+2-1-0.135= 0.9

From the marginal probabilities we found thatg(= 0.9; similarly, E¢Y) = 1.5.
We conclude that Cow, Y) = 0.9 — (0.9)(1.5) = —0.45. We compute further
that Var(X) = 0.63, and we have a regression equafios 1.5— 0.71(X — 0.9).

Covariance measures the degree to whichndY change linearly together.
Proposition (properties of the covariance).

() Cov(X,Y) =E(XY) - E(X)E().
(i) Cov(X,Y) = Cov(?, X).
(i) Cov(X, X) = Var(X).
(iv) Cov(a, X) =0.
(v) Cov(@X + bY, Z) = aCov(X, Z) + bCov(Y, Z).

The proofs of (i)—(v) are easy but worthwhile exercises. You can get
other interesting results by combining them. Parts (iv) and (v) together say
that Cov(X + a, Y) = Cov(X, y). Combining (ii) with either (iv) or (v) gives
“right-hand” versions of those propositions.

Another important property can be seen by going back to the analysis of the
regression of one function of on another. By positivity of the expectation, we
know that even at its minimum point{Fg (X)—bk(X)]?} > 0. Using our best value
for b, expanding and simplifying we get g (X)]2} — {E[g (X)2(X)]}2/E{[1(X)]?}.
Clearing the denominator, we get a very important fact:

Theorem (Cauchy—Schwarz inequality).{E[g(X)(X)]}% < E[g(X)?]E[R(X)?],
and the two sides are equal when g and & are proportional.

If you stare at this result, and especially at the way we derived it, you will notice
how closely it parallels the Schwarz inequality from Chapter 2 (see 2.3.5). The
inequality is useful in many kinds of mathematics. Remembering that

Cov(X,Y) =E{[X —EX)][Y —E®)]},
our inequality says that
Cov(X, Y)* < E{[X — EQ)I’} E{[Y — E(Y)?]?} = Var(X)Var(Y)

in all cases.
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We earlier found the regression of one trinomial on another,

ety 1= 0= (7).

Comparing this to our general linear regression formula with slbpe=
Cov(X, Y)/Var(X) = —q/(1 — p) and remembering that Vax{) in this case

is np(1 — p), we find that Cov(X, ¥ = —npq. That this is negative reflects the
unsurprising fact that the more observations get counted in one category, the fewe
there tend to be in others. If we are looking at the covariance of two counts of a
general multinomial, we can treat them as a trinomial, our two categories and an
Other category combining all the remaining cases.

Proposition. For a multinomial M(n, p1, ..., px) vector X, Cov(X;, X;) =
—npipj-.

7.5.6 The Correlation Coefficient

By analogy with the sample correlation coefficient (see 2.7.1), there is a way to
measure how strongly two variables are correlated, apart from the issue of how
variable they are:

Definition. The correlation coefficient between random variable andY is
Pxy = COV(X, Y)/O'xay.

Proposition. —1 < pxy <1

We check this by squaring the definition, applying the Cauchy-Schwarz
inequality, and remembering that covariances may be either positive or negative.

Example. In a multinomial vectorpy,x, = —/(pip;)/(1 — p:)(1 — p;)). No-
tice that the number of trials turns out to be quite irrelevant. This is a general
phenomenon.

Proposition (properties of the correlation).

() pxy = pyrx-
(ll) Ifa > 0, then PaXx, Y = PXY- Ifa < 0, then PaXY = —PXY-

(iii) PX+aY = PXY-

Prove these for yourself from the corresponding properties of the variance and
covariance. They tell us that the correlation coefficient reflects the tendency of two
random variables to vary upward or downward together, without regard to their
scale, or units, of measurement. We call such a quadititgnsionless. This sug-
gests one reason whydid not appear in the multinomial correlation—it measures
mainly the size of the experiment.

In Chapter 2 (see 2.7.1), we used correlation coefficients to write linear
regression equations compactly. The same technique works here:

Definition. Let X be a random variable with EQ¥= 1 and VarX) = o2. Then
Z = X s calledX standardized.
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Proposition.
(i) E(z)=0.
(i) Var(z) = 1.
(i) pxy = Cov(Zy, Zy),

where of courseZy, Zy are X and Y standardized. You should prove this
proposition as an easy exercise. Now apply our linear regression equation:

Proposition. Thelinear regression of Y on X may bewritten Z; = pxy Zx.

7.6 Linear Combinations of Random Variables

7.6.1 Expectations and Variances

We often find ourselves interestedlinear combinations of the coordinates of a
random vector, for exampleX + bY, wherea andb are constant.

Example. A salesman gets $500 commission on each Corvette he sells, and $40(
on each Cadillac. The sales are unpredictable; call the daily number of Corvettes
sold vV, and of CadillacsD. His daily earnings are then the random quantity
500V + 400D.

Immediately from the fact that E is linear, we get that E(+ bY) = aE(X) +
bE(Y).Inourexample, the salesman’s expected daily earnings would be BPOE(
400E(D).

We might also be interested in the variance of a linear combination:

Var(aX +bY) = E{[aX + bY — E@@X + bY)]?}
= E({a[X — EQ)] + b[Y — EQY)]}?).
Expanding the square and applying the linearity of E, we get that this is equal to
a?E {[X — E(X)]?} + 2abE{[X — E(X)][Y — E()]} + b°E{Y — E()]?}.

Notice that we have here expressions for the variancg ahdY, and for their
covariance.
We have discovered an important result:

Proposition.

() E(aX + bY) = aE(X) + bE(Y).
(i) Var(aX + bY) = a®Var(X) + 2abCov(X, Y) + b?Var(Y).

In the special case whepeandY are trinomial,
Var(X + Y) = Var(X) 4+ 2Cov(X, Y) + Var(Y).
But we know that VarX) = np(1 — p), Var(Y) = nq(1 — g), and Cov{, Y) =
—npgq; SO
Var(X + Y) = np(1 — p) + nq(1 - q) — 2npq = n(p + q) — n(p + q)°
=n(p+4)1—p—q).
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Notice thatX + Y is just the total count not falling in the Other category, so it
is B(n, p + ¢). As it turns out, we should already have known the result of our
variance calculation.

You should verify as an exercise that these results may be extended:

Proposition. For a k-dimensional random vector X,

() E(Ci aiXi) = Y aE(X)).
(i) Var(Y)_; a;X;) = Yy a?Var(X;) + 2%, ;- aia;Cov(X;, X)).

7.6.2 The Covariance Matrix

Our formula for the variance of a linear combination is fairly ugly. Matrix algebra
will at least let us make the notation prettier. First of all, we can v@fgl aX; =

T
a X.

Definition. Let u = E(X) be the vector of expected values of the coordinates of
X. Then thecovariance matrix of X, £ = Var(X) = E[(X — p)(X — p)"].

Notice that theouter square of ann-dimensional vectorv', is an nx n square
matrix.

Proposition.

(i) Thediagonal elements =;; = Var(X;).
(i) Fori # j, %;; = Cov(X;, X;).
(iii) Var(a™) =a'xza.

You should check (i) and (ii) by expanding the matrix product in the definition.
Then check that (iii) is just a restatement of our formula for the variance of a linear
combination.

Proposition.

(i) X isasymmetric matrix; that is, X;; = X ;; (by one of the properties of the
covariance).
(i) = isanonnegative definite matrix; that is, for any v, v' =v > 0.

(Thisis because (ii) is just the variance of the linear combinatiof) and variances
are always at least zero).

We shall have many uses for the matrix formulation later. Notice, though, that
if the coordinates have zero covariance (they are said tongerrelated), the
simplification is drastic even in the old notation:

Proposition. If the coordinates of a vector X are pairwise uncorrelated, then

k k
var <Z a,-X,») = Zal?Var(Xi).
i=1 i=1

This is a promising formula, if only we had better than a qualitative idea of when
variables might be uncorrelated.
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7.6.3 Sums of Independent Variables

A lack of tendency to change together reminds me of probabilistic independence.
Assume thatX andY are independent; we might ask ourselves to what extent
we can compute E[ X, Y)] one coordinate at a time. If we can facigX, Y) =
g(X)h(Y), then

E[g(X)R(¥)] =)D g(Oh(Y)p(X.¥) =YY" e(X)h(Y)px(X)py(Y)
X Y X Y

because of independence; and so factoring constants out of the inner sum, wi
obtain

> 8(X)px(X) Y h(Y)py(Y) = E[g(X)IE[A(Y)].
X Y

We summarize this as follows:
Proposition. For X and Y independent, E[g(X)A(Y)] = E[g(X)]E[A(Y)].

But then Covg, Y) = E(XY) — E(X)E(Y) = E(X)E(Y) — E(X) — E(Y) = 0.
Proposition. For X and Y independent, Cov(X, Y) = 0.

This gets us the following weaker, but very useful, result:

Theorem (variance of independent sujns If the coordinates of a vector X are
pairwise independent, then

k k
Var <Z a,-X,») = ZafVar(X,-).
i=1 i=1

This beautiful and unexpected fact was one of the things that first convinced me
that mathematical statistics was worth learning. | remember it by thinking of the
case where all the's are 1 and saying to myself, “With independence, the variance
of a sum is the sum of the variances.” Its uses are many, as we shall see.

Example. Your restaurant has a weekly profit that varies unpredictably, but the
standard deviation is about $500. Over a year (52 weeks), how variable would
your total profit be? It seems plausible that weeks should be independent of one
another. The weekly variance is 508- 250,000; so over a year the variance
would be 13,000,000 by our theorem. The standard deviation of your annual profit
is +/13,000000 = $3605.55.

7.6.4 Satistical Properties of Sample Means and Variances

We have mentioned a particularly important sort of random vector, a random
sample, in which we try to repeat an experimental measurement identically and
independently a number of times, in order to try to see through the confusing
effects of random noise. We then try to compute a summary measurement that we
hope will be more accurate than any one measurement, for example, the ordinan
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average, osample mean, written X = % >'_4 X; when, in contrast to Chapters 1
and 2, we think of it as a random variable until we carry out the experiment. For
example, our diligent college applicant who took the SAT five times has a sample
mean score of 1018.

This points out a particularly easy case of the results of the last section, when
we are interested in the simple summofandom coordinates. Then our formulas
reduce to )", X;) = Y/_; E(X;) (the expectation of the sum is the sum of
the expectations) and the more complicated

k k
Var (Z Xi> = Var(x;)+2 Y Cov(X;. X;).

i=1 i=1 i<i<j<k
When we have pairwise independence, as in a random sample, we have seen th
this reduces to VA _\_, X;) = >+_, Var(X;). When the marginal distributions
of the coordinates are all the same, say that of a random varghkieen these
simplify radically to §}_/_, X;) = nE(X). When the joint distribution of each
pair of coordinates is the same, then we get

k

var (Z X,~) = nVar(X) + 2(’;) Cov(X, Y) = nVar(X) + n(n — 1)Cov(X, Y),
i=1

since all the covariances are equal. We will see some lovely applications of this

shortly. Of course, in the case of a random sample, where we have independenc

of the coordinates, this collapses again to(¥af_, X;) = nVar(X).

Now the sample mean divides the summyyso we get an important result.
Theorem (statistics of the sample mean).

(i) E(X) = E(X).
(ii) Var(X) = Ya&),

(i) o5 = .

You should finish proving these for yourself. This small result is among the
most useful in all of statistics, for it tells us how much good replication—repeated
experiments—can do us in the problem of measurement in the presence of noise
Our index of uncertainty, the standard deviation, gets steadily smaller as we in-
crease the number of experiments. Unfortunately, the rate of improvement is only
by the square root of; so that for example, we must quadruple the amount of
work we do in order to double the accuracy. You may heacalled the standard
error of the mean.

Example. The standard deviation of one person'’s total score on the SAT is about
50 points. Our student who averages his results on five tries is therefore measurin
his performance with a standard deviation of 5@ = 22.36 points.

Itis natural also to wonder what the statistical properties ofahaple variance
might be. For simplicity in notation, let () = wx. If we knew the expectation,
then the obvious estimator of the true varianc&ds 63 = 1 37 (X; — ux)?
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Taking its expected value, we get) = 2 37 E[(X;—ux)) ] =2 " 02 =
o2 from the linearity of expectation. Whenever the average value of a statistic is
equal to a parameter of interest, we call the statistlased for that parameter.

Of course, this estimator is of little use in practice, because if we are trying
to understand an unknown distribution by studying data, we are very unlikely to
know wx. That is why we would presumably want to use the sample variance
from Chapter 2 (see 2.4.2) to estimate the varianc& ofMe remember it as
s?2 = -1 3" (X; — X)? but could compute it more generally by

l n _
52 = 1 |:;(Xi —v)?2—n(X — v)2:|

for any constant. To find its expectation, you will not be surprised to hear that a
convenient choice is = uy:

E(s?) = ! {ZE[(Xi — ux)’] —nE[(X - Mx)z]}
i-1

n—1

Thuss? is also an unbiased estimate of the true varianc& .dllow we see the
most important reason to divide lay— 1 instead ofz, so that on average we will
be correct.

Proposition. For any random variable X whose mean and variance ux and o2
exist, and random samples of sizen > 1,62 and s are unbiased estimates of o'3.

7.6.5 The Method of Indicators

Notice that the fact that the expectation of the sum is the sum of the expectations is ¢
general justification for our use of tinaethod of indicatorsin Chapter 5 (see 5.5.3).
We broke a negative hypergeometric random variableWintquivalent piece¥;,
each telling us whether or not tlitlh white marble appeared before it black
marble. We were able to calculate the expectation of that indidat@s,+ 1). The
sum of allw of the pieces then had expectatidib /(B + 1). This method applies
to a number of other problems. For example, in a binomial experimen; lbe
zero if theith experiment is a failure, and one if itis a success. TXiea )", X;
is a Binomial(n, p random variable. Now, E(Y=0-(1—p)+1-p = p, so
E(X) = np, as we learned before by a more complicated procedure.

We can use the same approach to calculate the variance of a binomial. Notice
thattheX; are independent of one another, because they refer to different Bernoulli
experiments:

Var(X;) = E(X?) — E(X;)* = p — p°.

(notice thatX? = X;, since the only values are 0 and 1), and so Var&Xp(1— p),
since in this case the variance of a sum is the sum of the variances. As a slightly
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harder exercise, you should use the same technique to find the expectation an
variance of a negative binomial random variable.

Calculating the variance of a negative hypergeometric variable is somewhat
more difficult by the inductive method. Using indicators,

5 5 b b? b(B+1-0b)
Var(X) = BXD) —BX) = 53 ~ 31 T B rip
Unfortunately, theX; are by no means mutually independent. Intuitively, if one
white marble falls before théth black, it creates an additional slot into which
the next white one might fall; therefore, we would expect them to be positively
correlated. To calculate the covariance, pretend that onlytthand jth white
marbles are present, so we have an,N{2b) variable:

("2)(%")

E(X; X ;) = P(both beforeth black)= p(2) = ﬁ
_ b+l
C(B+1(B+2)

b(b + 1) b? b(B —b+1)

COVX X)) = G DB+2 BLE BB+ 2

Now we are ready to use our formula for variances of sums of identical variables
from the beginning of this section:
Wb(B—b+1) WW—-1)bB—->b+1)

(B+1y (B+1)4(B +2)

Var(X) =

Now simplify this:
Proposition. If X isN(W, B, b), then
Var(X) = (Wb(B — b + 1)(W + B + 1))/((B + 1)*(B + 2)).

Example. 100 caribou are released into a wildlife preserve in which they had
been extinct. Twenty-five of them have tiny data recorders implanted under the
skin of the neck. After 6 months, scientists need to read 10 recorders, so they
begin recapturing caribou. How many animals will need to be captured to get
them?

This problem is negative hypergeometric, with= 75, B = 25,b = 10, andX
is the number of caribou captured without recorders. We kno¥) E{ 750/26 =
28.85, so they have to capture 39, on average. X %)1262'71“ = 66.40, SO
that the standard deviation of the number captured is a little more than 8. A typical
variation might be from 31 to 47 caribou captured.

This formula is impressively complicated, so let us try to interpret it. In the case
where we used binomial approximation (see 6.3.1), we letW, andp = BLH.
Then we can write VaiX) = np(1 — p)(l + %) The final factor is called a
finite population correction; it says that the binomial approximation compresses
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the variance by that factor. When the approximation is appropriate, of cBurse
small compared t®, and the correction is practically 1. As an exercise, you should
show that the finite population correction to the variance when you try to apply the
negative binomial approximation to negative hypergeometric random variables is
roughly 1— 1’%12. Therefore, using this approximation inflates the variance (but
only slightly in cases where the approximation is any good).

It should now be a straightforward exercise for you to find the variance of a

hypergeometric random variable.

7.7 Convergence in Probability

7.7.1 Probabilistic Accuracy

In the last section we noticed that sample means had standard deviations (standa
errors) that got smaller as the sample size grew; it seems reasonable to interpre
this as saying that the sample mean became more accurate as an estimate of t
expectation the more data we take. But does it really say that? We are going to com
up with a more precise statement, in terms of probabilities, of what we really mean
when we say that an estimator is “accurate.” Of course, if an estimator were simply
correct, this would not be a statistics course. So we say something weaker, like
“most of the time, the estimator is pretty accurate.” To turn that into mathematics,
let X,, be a sequence of random variables (statistics, presumably based on growin
samples), and let be the “true” value that we wish th¢,’s were equal to. Now let

d > 0be an error that for some purpose we are willing to tolerate. It is a reasonable
guestion to ask how often the statistic is inside the error bound. That is, what is
P(|Xn —ul < d)? And especially, does the probability of being this accurate get
large as we go to bigger sample sizes? We use this idea to make a definition:

Definition. A sequence of random variabl&s is said toconvergein probability
to a constant if for any standard of accuraay> 0, lim, .o P(|1X, — u| < d)=1.

So we could imagine a big enough experiment that would make us as sure a:
we could hope to be of meeting our standard of accuracy.

7.7.2 Markov'sInequality

Unfortunately, it is not at all clear how we would go about checking that some
statistic converges in probability to the value we want. Our experience would
suggest that those probabilities usually get more and more complicated to computt
as the sample grows. So we must look for some indirect way, based on some
qualitative summary of behavior (like the standard error), to check that we have
convergence in probability.

There is a remarkably simple device for doing this. First turn the probability
around, into the complementary one for exceeding the error bound; then expres:
itas a sum: BX — u| > d) = X, =4 P(x:). Now notice that whenever
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| X — u| >d, obviously'XT*"‘ > 1. Multiplying each of our probabilities by this
number that is at least 1, we get the inequality

PIX—plzd) = Y XA

[X—p|=d

pxi).

Extending this sum over the whole sample space can only increase the right-
hand side: RX — p| = d) < 3oy, X2l p(x;). Now the right-hand side is an
expectation:

Proposition (Markov’s inequality). For X a discrete random variable,
1
P(X —ul>d) < 5E|X — ul.

As an exercise, you will compute some easy examples. Do not be misled into
imagining that this is a useful inequality, helpful in calculating approximate prob-
abilities. In almost every practical case it gets awful answers. Its main reason for
being is that it immediately gives us a general truth:

Proposition. Let X, bea sequence of randomvariableswith the property that for
some constant ., lim,,_,  E| X, — 1| = 0. Then the X,, convergein probability to

.

This proposition holds because the right-hand side of Markov’s inequality goes to
zero, forcing the left side to zero as well. Therefore, its complement goes to 1.

This is a big improvement, because it connects an overall measure of accuracy
the expected absolute error, to convergence in probability. But it is no surprise that
we have seen little of this measure; historically, it turned out to be hard to work
with.

7.7.3 Convergence in Mean Sguared Error

We would prefer to do everything in terms of our old friend, the mean squared
error (MSE). But that is now easy:

(EIX — ul)? = [E(L- X — uD]? < E)E(X — 1l?) = E[(X — p)?]

by probably the easiest possible application of the Cauchy—Schwarz inequality
(see Section 5.3). So if the MSE gets small, then we are sure that the expectet
absolute error gets small as well. We have finally figured out a widely applicable
fact.

Theorem (convergence in MSE implies convergence in probabilitlet X,
be a sequence of random variables with the property that for some constant .,
lim, o E[(X, — n)?] = 0. Then the X,, converge in probability to ..

This result will be easier to use than the one before it (we know much more about
MSE), but you might remember that it says less. There are sequences of randor
variables that do not converge in MSE, but do converge in expected absolute error
as you will check in an exercise.
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We are ready for our promised application. We found out in the last section that
the variance of the sample mean, if there was one, decreased in proportion to th
sample size.

Theorem (a law of large numbejs If X has expectation x and finite variance,
then the sample means of random samples of size n, X,,, converge in probability
to u.

This goes a bit of the way toward justifying what scientists have always done:
To get more accurate results in a noisy experiment, repeat the experiment as ofte
as possible, then average.

Later in the book we will prove a variation of this theorem without having to
assume thak has a finite variance. We might have guessed that something like
this was so, because we started by studying the convergence of variables that ha
a finite absolute error (which means they need only have an expected val)e E(
Only then did we back off to weaker results about variables with finite variance,
in order to make our math easier.

7.8 Bayesian Estimation and Inference

7.8.1 Parametersin Modedls as Random Variables

The frequentist style from Chapters 5 and 6 is not the only way of looking at
problems of hypothesis testing and parameter estimation.

Example. A genetic crossbreeding experiment is believed to produce 25% seeds
that are homozygotic for a lethal gene; it is believed that those seeds can neve
sprout. Further, it is impractical to count the seeds directly; the scientist can only
count the sprouts that come up, and he believes that all seeds other than the hc
mozygotic ones will sprout. He observes 81 sprouts. How many seeds were there
originally?

It seems plausible to imagine that before the experiment, the number of sprouts
would be expected to be a®(0.75) random variable, which was then observed
to take on the valu& = 81. The sample size is unknown. As exercises, you
should see what a method-of-moments estimate and a confidence interval tell yot
aboutn.

Instead, we will go back to the state of the experiment before the seeds sprouted
We do not knowX, because we believe that it is a random variable; furthermore,
we do not know:. Would it help us with our thinking to imagine thatis also a
random variable, so thaM, X)" is a random vector?

Generally, imagine that before the experiment, we knew that there would be
a discrete quantityl that we would measure and a discrete quarttityat we
cannot measure but would like to know. We believe that these quantities have
some bivariate probability mass functip(ix, 6). Once we have measuré&d= x,
what do we know about? By the conditioning formula, we have thag x (6 |x) =
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p(x,0)/px(x) = p(x,0)/Q ¢ plx. ®)). We still do not know exactly the value
of 9, but perhaps its conditional distribution will say something more about it than
we knew before.

This leaves us with the problem of finding the bivariate mass function. Usu-
ally, we reason as follows: Thinking of th#& as the unknown parameter of a
distribution for the random result, its probability mass function is the other
conditional pxje(x]0). In our example, we believed that followed a binomial
law with unknown parametet. But then we imagine that before this random
process determine#, another random process determimed._et this marginal
random variable have mass functipg (0); this is called theprior distribution
of 6. Now the multiplicative rule gives us the bivariate mass function we needed,
pe(@)pxie(x10) = p(x, 0). After the experiment is done, we calculate

pe(0)pxie(x]0)
> Pe(®)pxje(x|®)
This conditional mass function far is called itsposterior distribution. Notice
that it is a version of Bayes'’s theorem, so that this style of reasoning, which uses
experimental data as a bridge from the prior to the posterior distribution of an
unknown parameter, is calldhyesian inference.

poix(@]x) =

7.8.2 An Example of Bayesian Inference

We need to come up with a prior distribution for our number of sesidour ge-
netics experiment. This is usually the hard part in a Bayesian analysis. Sometime:
there will be a sound scientific basis for assuming a prior variability for the pa-
rameter, but very often, statisticians must just do the best they can to describe thei
uncertainty about its value in the form of a probability law. In our problem, let us
say that before the experiment, the geneticist thought, on the basis of experience
that on average something like 100 seeds would have been formed. Let us declar
that the prior number of seeds was a Poisson random variable.witl1 00, be-
cause this is a simple law we know quite a bit about. Then we multiply our Poisson
and binomial mass functions to get a bivariate mass function:

pr(Ll-p).

Bayes’s theorem now requires us to divide this expression by its sum over all
possible values of, to arrive at a posterior mass function. As will often be the case,
we can here avoid doing all that work. The variable part of the posterior is those
terms in the bivariate mass function involving A" (1 — p)"~*/(n — x)!. Simplify

it even further by factoring out the constarit to get [A(1— p)]"~*/(n — x)!. The
mass function will be a constant multiple of this, which causes it to sum to 1 over
all possible values of. Now let the random variable instead Be= n — x, the
number of seeds that dit sprout. Then its posterior mass function is a multiple
of [A(1 — p)]¢/z!. We conclude thaZ is Poisson[A(% p)] (because we have the
variable part of its mass function, without the multiplicative constarf!=—?)).

n

p(n, x) = py(n)pxn(x|n) = %e n!

=)
xl(n — x)!
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This is intuitively plausible, since the parameter is just the average number of
seeds times the proportion that do not sprout.

Itis easy to find uses for the posterior random behavior of the unknown parame-
ter. For example, a sensible estimate might minimize its mean squared error, and it
an earlier section we learned that the expected value has this property. The estima
is then thgoosterior mean. Inthis problema = E(N |x) = E[x+Z] = x+A(1—p).

In the genetics example, if our scientist believed in advance that there would be ar
average of. = 100 seeds, then after 81 sprouts came up he would estimate that
n =81+ 100x 0.25= 106 seeds had formed.

We also now know the posterior mean squared error, which is just the variance
of the posterior distribution. Before the experiment, when the scientist thought
there would be about 100 seeds, his standard deviation wouldlie® = 10,
from what we know about Poisson variables. With the experiment behind him,
he believes there were about 106 seeds. But now the standard deviation of tha
estimate is/Var(x + Z) = +/Var(Z) = 5. The experiment has narrowed down
its value quite a bit.

Bayesian thinking provides the analogue of a confidence interval, but it is some-
what easier to compute and to understand. The unknown parameter is now a randot
variable; so just find two values within which it falls with high probability:

Definition. A 100(1— «)% Bayesinterval for a parametef is a pair of numbers
6. anddy and a posterior distribution fér = ® conditional on experimental data
xsuchthatR <® <fy|X =x)>1—0.

In the genetics experiment, sinéeis Poisson(25), we discover thatP(<
15) = 0.02229 and P£ > 36) = 0.02245; therefore, adding the known 81
sprouted seeds, 9 N < 116 is a 95% Bayes interval far.

7.9 Summary

In this chapter we defined random vectors and the conceptsaajinal and
conditional distribution, whose mass functions in the discrete case are given
by px(x) = >y p(x,Y), and pxjy(x|y) = p(x, y)/(pr(»)) (2.2); we also de-
fined independence of random variables (4.1). We then considered expectations
of functions of random vectors (in the discrete casg(E]] = >y g(X)p(X)
(5.1)) andconditional expectationsEy x[g (X, Y)Ix] )"y g(x, Y)pyix (Y |x). These
combine to give the useful formula &FX, Y)] = E{Eyx[g(X.Y)IX]} =
Ey{Exyy[g(X. Y)IY]} (5.3). This concept suggested tregression of one ran-
dom coordinate on another. When such regression predictions are linear, this lec
to the ideas ofovariance Cov(X, Y) = E{[X — E(X)][Y — E(Y)]} (5.4) andcor-
relation pyy = Cov(X, Y)/(oxoy) of random variables (5.5). These tools allowed
us to deal witHinear combinations of random coordinates, in particular to their
variance,

Var(@X + bY) = a®Var(X) + 2abCov(X, Y) + b*Var(Y).  (6.1).
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This drastically simplifies in the case of independent observations to
Var(Yi_ aiX;) = Yi_ a?Var(X;) (6.3). For example, we were able to study
the uncertainty in a sample mean, includingstedard error o3 = ox//n (6.4).
At last, we have justified thmethod of indicators (6.5).

Our new information about the rate at which sample means converge to the
expectation inspired the ideaadnvergencein probability (7.1) and a first example
of alaw of large numbers (7.3). Finally, we used the ideas of conditional and
marginal distribution to demonstraiayesian inference, where we formalized
our knowledge about an unknown parameter apaserior distribution (in the
discrete parameter case

P(—)(Q)PX\(-)(XW)
Z@) p@(@)(x|®)

after we have observed a sample of measurements whose probabilities depend ¢
it (8.1).

P(~)\x(9|x) =

7.10 Exercises

1. In a Mendelian crossing experiment, 25% of the third generation of white
mice have genotype AA, 50% have genotype AB, and 25% have genotype
BB. There are 40 mice born into the third generation.

a. What is the probability that you will find 24 AB mice in your third
generation?

b. If you quickly discover that 9 are type BB, what is now the probability
that 8 are of type AA?

¢. What is the probability that there will be 11 AA, 22 AB, and 7 BB in the
third generation?

2. Hereisthe probability mass functigiix, y) of a certain bivariate distribution:

Yy
0 1 2 3 4

0.06667| 0.06667| 0.04286| 0.01905| 0.00476
0.05000| 0.08571| 0.08571| 0.05714| 0.02143
0.02143| 0.05714| 0.08571| 0.08571| 0.05000
0.00476| 0.01905| 0.04286| 0.06667| 0.06667

wN k- O

a. Computepx(1) = P(X = 1).
b. Computepy|x(2|1) = P(Y = 2|X = 1).
¢. Compute EX + 2Y).

3. Here is the probability mass function of a certain random vector():
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y
0 1 2 3

0 | 0.027| 0.108 | 0.144 | 0.064
x 1)0.081| 0.216| 0.144 0

2| 0.081| 0.108 0 0

3 | 0.027 0 0 0

a. If you know thatX = 1, find the conditional probability mass function
fory.

b. Find the probability mass function f&f = ¥ — X.

c. Whatis PY > X)?

. Let (X, Y) be trinomial Mg, p, g, 1 — p — ¢). Start with the bivariate mass
function p(x, y) and work backwards to show that

a. X has marginally the mass function of/B(p); and
b. X has conditionally orY = y the mass function of B(— y, p/(1 — q)).

. A negative multinomial NM(k, p) random vector, wher@® = (po, p1,
p2, ..., p;) are positive and sum to 1, is the vector of counts =
(X1, X2, ..., X)) falling in categories 1 td as a result of a sequence of
independent experiments in which tpis give the probabilities of falling in
the various categories. The novelty is that we stop wherperiments have
fallen in the zeroth category.

a. Write down the probability mass function for a negative multinomial
vector.

b. What is the marginal distribution of;? What is the conditional
distribution ofX; givenX;?

. We have 5 pea seeds homozygotic for smooth pod, 8 pea seeds homozygoti
for wrinkled pod, and 12 heterozygotic pea seeds (these are nonoverlapping
genetic categories). We pick 7 of these seeds at random for a cultivation
experiment. Let the random vector (X) fe X = number of seeds homozy-
gotic for smooth pod chosen ai’d= number homozygotic for wrinkled pod
chosen.

a. Computep(2, 3).
b. Compute the marginal probabilifyx (2).
c. Compute the probability that = 3 given thatX = 2, pyx(3|2)

. Consider a random vectorX(Y) with the following probability mass
function:

y
0 1 2

0| 0.08| 0.15| 0.09
x 1] 011] 0.21| 0.18
2| 0.07| 0.06 | 0.05

Compute EX|X + Y = z) for the special case= 2.
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10.

11.

12.

13.
14.
15.
16.

17.

18.

19.
20.
21.
22.

7. Random Vectors and Random Samples

Construct atable of the cumulative distribution function for the random vector
of Exercise 7.

Let a random vector be the two rectangular coordinates of uniform (equally
likely to be anywhere) hits on a circular dart board. Find the cumulative
distribution function and show that the two coordinates are not independent.
For a random variable whose sample space consists of pairs of integers, finc
a formula that expresses the probability mass functén y) in terms of
values of the cumulative distribution function.

Let X be NB, p) andY be independently NB( p). Find the probability

law for the variableZ = X + Y.

Let X be B, p) andY be independently B(m, }» Derive the probability
mass function foZ = X + Y in a manner analogous to the method used in
the Poisson case, using summations.

Prove properties (ii)—(v) of the covariance (see Section 5.5).

For the random vector of Exercise 2, compute Wgr{ar(Y), and Cov{, Y).

For the random vector of Exercise 7, compute ¥gr(v/ar(Y), and Covg, Y).

If X is the covariance matrix foX, prove that (a)2;; = Var(X;); (b) for

i # j, Zij = Cov(X;X;); and (c) Var@'X) = a" Za.

In a certain population, people’s weights have mean 60 kg and standard de-
viation 12 kg; their heights have mean 160 cm and standard deviation 10 cm.
The covariance of the two is 60. The Terrell Fat Index is (heighteight).

(It tends to be large for thin people and small for fat people.) Write down the
mean and standard deviation of the TFI.

Here is the probability mass function for the number of Corvett&sand
Cadillacs () sold in one work day by a sales worker:

d
0 1 2
0| 003|011 | 0.16
v 1/0.08]|0.19]| 0.13
2| 0.14]| 0.09 | 0.07

The commission for selling a Corvette is $500 and for selling a Cadillac is
$360. Find the expected value and standard deviation of the worker’s daily
commission.

Prove the three properties of the correlation (see Section 5.6).

For the random vector of Exercises 7 and 15, compuyte

Derive the statistics of the sample mean.

I know that there are an average of 20 bullets that will not fire in each crate
of cheap ammunition | sell, with a standard deviation of 6. A customer who
buys in large quantities occasionally thoroughly tests a crate, to see whether
| am maintaining my standards. If the customer counts the bad bullets in 12
crates a year and computes the sample mean of those 12 counts, what are tf
expected value, variance, and standard deviation of the sample mean he wil
compute next year?
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Use the method of indicators to compute the expectation and variance of a
negative binomial NB(, p) random variable.

You run the computer maintenance facility at your company. Of the mis-
behaving computers you see, approximately 24% have primarily hard-drive
problems, 38% have primarily display problems, 22% have primarily mother-
board problems, and the rest have some other primary problem. One morning
you arrive at work to find that 12 computers have arrived for repair.

a. What is the probability that 5 have primarily a hard-drive problem, 2 have
primarily display problems, 4 have primarily motherboard problems, and
the other has something else?

b. What is the probability that at least three have motherboard problems?

In the situation of Exercise 24, your average repair costs are as follows: $150
for hard drives, $275 for displays, $80 for motherboards, and $50 for other
problems.

a. On average, how much will it cost to fix the primary problem in those 12
computers?
b. What is the standard deviation of the cost?

For the discrete unifornf0, ..., M} random variable with\/ even, let the
centern = M/2. For integer values of the errdr compute both sides of
Markov’s inequality. Check it for several values éfand M; note that it is
usually very crude.

Define a sequence of random variahlgsfor positive integers, with mass
functions

12 x—
p(x):{i/nzl/n i:g,

a. Show that theX,, converge in probability tge = 0.
b. Show that theX,, converge in expected absolute erroute= 0.
c. Show that theX,, do not converge in MSE ta = 0.

In the genetics problem of Section 8:

a. Find a method-of-moments estimatenof
b. Find a 95% confidence interval fat

In a survey of a wildlife refuge, you believe that in a systematic overflight in

a small plane, you will have a 30% probability of seeing any particular adult
brown bear, and the sightings are independent of one another. Your prior best
guess of the total adult brown bear population is Poisson with a mean of 150.
When you actually do the overflight, you see 48 bears.

a. Using a Bayesian analysis, compute the mean and standard deviation of
the posterior distribution of the total bear population.
b. Find a 99% Bayes interval for the total adult brown bear population.
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7.11 Supplementary Exercises

30. In a survey of galaxies, a sphere one million parsecs in radius is arbitrarily
placed, and a right-angled coordinate system is defined with the origin at the
center of the sphere and ax&s Y, and Z measured in units of a million
parsecs. Since the sphere was arbitrarily located, the center of any galaxy
that happens to fall inside this sphere may be thought of as a random vector
uniformly distributed over the interior of the sphere.

a. Find the marginal density for thé&-coordinate of the center of an
arbitrarily chosen galaxy inside the sphere.

b. Findthe marginal bivariate density of the coordinatésZ) of the galactic
center (that is, ignoring).

c¢. Find the conditional density df, given thatX = x (but ignoringZz).

31. Let X be a trivariate random vector. Find the formula, using cumulative dis-
tribution functions, for PX € (a1, b1] x (az, b2] x (as, bs]}; thatis,X isin a
rectangular box parallel to the axes.

32. Using the results of Exercise 10, prove that for a random vector with sample
space pairs of integers,#f(x, y) = Fx(x)Fy(y) forall (x, y), thenp(x, y) =
px(x)py(y) forall (x, y).

33. a. In the negative multinomial random variable of Exercise 5, find

COV(X,’, Xj)
b. If (X, Y)is negative multinomial NMK, 1— p —g¢, p, ¢), find an equation
for the least-squares regressionrobn X .

34. Show that the finite population correction to the variance when using a nega-

tive binomial approximation for a negative hypergeometric random variable

is roughly 1— 1’%12. Hint: Since in this cas& and B should be large, let

p = =g+ (instead of ;" as we found convenient in (6.2.3)).

35. Find the variance of a hypergeometric HW B, W, n) random variable,
using the method of indicators.

36. Find finite population corrections to the variance when binomial approxima-
tions to hypergeometric variables are used as in Exercises 6.34 and 6.35.

37. Sitting Bull's warriors have trapped General Custer’s last 40 soldiers in a
narrow valley. They are crowded so tightly together that any arrow aimed at
them is sure to hit some soldier. However, the bowmen are standing at a safe
distance, so that for all practical purposes any soldier is equally likely to be
hit by any arrow.
One hundred arrows are released at the soldiers. What are the expectation an
standard deviation of the number of soldiers who are still not hit by any arrow?
Hint: Since the number of uninjured soldiers has a very complicated
probability law, you might try the method of indicators.

38. Considerthe collection of numbdk, 2, . . ., n}. Choosen of those numbers
at random. LetX be the sum of the numbers you have chosen. We showed
earlier (see Exercise 5.41) thatg(= m”—;l Find Var(X).
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Hint: Let X be the sum of: variablesX; each of which is the value of thiéh
number chosen. At some point you may need to compute XGow(;); one

way to do this is to pretend temporarily that= », so that you are drawing

all the numbers. In this special case, what is the variance of the total? Also,
at some point you may need the results of Exercise 3.28.

Notice that Exercise 38 established the variance of a Wilcoxon rankgum
(see 2.5.5) under the hypothesis that ranks are unrelated to level of a treatment

a. Show that under this hypothesis, the expectation of the Kruskal-Wallis
statistic is given by

12 G varw)
E(K) = n(n + 1) ; P

nj

b. Therefore, EK) = k — 1.

. A couple has rather erratic income because of their jobs. He is a musician,

who earns $200 for each gig. Unfortunately, gigs arise quite unpredictably,
though over the long run he averages 3 gigs per month. She is a mud wrestler
whose contract guarantees her exactly 8 matches per month. She has a 40
probability of winning any given match. When she wins, she earns $300.
What are the average and standard deviation of this couple’s total income for
one year (12 months)?

The skewness of a random variable i&; = E[(X — )%/ 3; thekurtosisis

ko = E[(X — u)*]/o. Prove thak? < k,. Hint: Try the Cauchy—Schwarz
inequality.

Some statisticians would be unhappy with our use of a Poisson prior dis-
tribution to estimate a binomial sample size, because a Poisson distribution
implies that we have too precise an opinion about whsthould be. But we
notice in Chapter 6 (see 6.6.3) that though the Poisson mean and variance ar
the same, the negative binomial has a larger variance than its mean; therefore
itis less precise.

a. Derive the posterior distribution of binomia) assuming that we knoyy,
given that its prior distribution is NB&( ¢).

b. In Exercise 29, the brown bear counting problem, let your prior for the
brown bear population size be NB(1,3D5) (so it has the same mean as
before). Now after seeing 48 bears, what is the posterior mean population
size?

c. Construct a 99% Bayes interval for the population size.
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CHAPTER 8

Maximum Likelihood
Estimates for Discrete Models

8.1 Introduction

You will remember that in Chapter 1 we introduced a variety of models for sum-
marizing experimental data, both for measurement data and for counted data. The|
in Chapter 2 we discovered a powerful general principle for choosing the param-
eters in our models for measurement data, the principle of least squares. This ha
the added advantage that it told us immediately how closely reality matched our
theory, because we could compute mean squared errors. You may have notice
that we have no comparable way of dealing with counted experimental data; we
proposed only standard estimates, based on the sample proportions, to estima
some of our models for contingency tables. But for other models, such as the lineat
logistic regression model with more than two values of the independent variable,
we had no idea how to choose the parameters. Furthermore, in all cases of counte
data, we had no way to quantify the distance of our model from the results of the
experiment.

Now we know a great deal more about counted data, because in Chapters 5 an
6 we developed a number of possible probability models under which our results
might have arisen by chance. This chapter will propose a general method for es-
tablishing distance from models to data, thelihood (essentially the probability
that you would observe what you did, given the model). This gives us plausible
estimates for the parameters: those that give the largest possible value of this like
lihood. We call this the method afiaximum likelihood. (Later, we will learn that it
is even more general than the principle of least squares, because in a certain sen:
least squares is a special case of maximum likelihood).
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Time to Review

Finding the maximum of a function
Partial and total derivatives
Chapter 1, Sections 7 and 8
Chapter 6

8.2 Poisson and Binomial Models

8.2.1 Posterior Probability of a Parameter Value

We mightwell believe that the Poissan(model is areasonable description of some
observation: for example, the number of car crashes in a year at a certain dangerot
intersection. But what i5? We need some way of estimating this parameter. If we
in fact observed crashes last year, then consider two possibilitieand i, for

the mean parameter. If we cannot in advance make a preference, we might say thz
from our ignorant point of view the two are equally probablex)P€ P(u) = 0.5.

This is just a (discrete) prior distribution on the Poisson parameter, of the sort we
studied in Chapter 7 (see 7.8.1). In that case, we might ask how probable the twc
areafter we carry out the survey and getcrashes: What are Plr) and Pf|x),

the posterior probabilities of the parameter? Bayes’s theorem, for example, tells
us that

Px|2)PG) _ P(x|2)
P@IA)P@R) + PEl)P() — Plx|a) + P(x|n)
after we cancel the.B's. Then we might decide that one of the two parameter
values is the better estimate if its posterior probability is the larger. Obviously, that
depends on the relative size ofdPX) = (A*/x!)e™ and Pf|u) = (u*/x)e *.
If, say, Pk|u) > P(x|1), then Pft|x) > P(x|x), and we would argue that we had
evidence favoring the model with mean

P@Q|x) =

Example. Two traffic experts propose average annual rates of severe accidents a
our corner. One says that there are 10 accidents on average; the other says th
there are 20. When we look up the records for 1997, we discover that there were
actuallyx = 15. It sounds like a tossup, so we apply our probability criterion:
P(15]10)= 0.03472 and P(120) = 0.05165. Both are a tad implausible, but
surprisingly, the evidence gives a bit of an edge to 20.

We have now turned our thinking around and are calculating what probabilities
would have been if the parameters were known and the random experiment had nc
been done yet (when in faat,is known and we are trying to guess the parameter).
We need some new language:

Definition. The discretdikelihood of a parameter (or vector of parametefs)
given the discrete data (vector)is L(0|x) = P(X = x|0).
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FIGURE 8.1. Poisson likelihood

The calculation in the example works for any finite number of possible parameter
values: If we believe them equally likely to start with, then Bayes’s theorem says
that the likelihood measures which of them is most probable after the experiment.
It would be interesting to graph the likelihood in our example as a function of
possible values of; and we do this in Figure 8.1. This will be a very characteristic
shape of likelihood curves.

In practice, the likelihood for even a good model may be rather small (there
may be a great many reasonable possibilitiestipiso we usually compare two
likelihoods not by taking their difference, but by taking their ratio:

Definition. Thelikelihood ratio for comparingd; to 6, is R = L(61]x)/L(62]X).

In our traffic problem, the likelihood ratio for an average of 20 versus 10 acci-
dents, when we have seen 15, i88165/003472= 1.4876. Our results would
happen about three times under the first model for each two times they would
happen under the second.

8.2.2 Maximum Likelihood

We perhaps should try to find an estimaterdy finding a value for which the
likelihood of A is largest overll possibilities. At whati is our curve highest?
Because the probability involves exponents, it will turn out thatitis easier to find the
maximum value of théog-likelihood log L(A|x) = — log(x!) +x log A —A. Sincex

is fixed and the best value bis unknown, we differentiate with respectitgusing
partial derivative notation) and set the result equal to zertmd® (1|x)]/(01) =
(x/A) — 1 = 0. Solving, we find that = x. We check that the second derivative
is [8%log L(A|x)]/(3A%) = —(x/A?), which is always negative. We recall from
calculus that this value is indeed thef maximum probability (if there were any
events to count). Therefore, our best guess for the Poisson mean parariseter
just the observed countof Poisson events. It is reassuring that it is so plausible
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a value, but it is not very exciting. It will turn out later that in more complicated
models there will be no obvious estimate of the parameters and therefore this
general procedure, finding the value for which the data would have been most
probable, will be very valuable. Therefore, we make the following definition:

Definition. A maximum likelihood estimate for a parametergiven a data vector
X, is a value) for which the likelihood L§|x) is as large as possible.

Proposition. For a Poisson (&) model with observed count x, the maximum
likelihood estimateis A = x.

For a binomial B, p) experiment, we shall lep be the unknown parameter
(usually you know how many trials took place). Then the likelihood jofthe
probability forx) is of course L(jx) = () p*(1 — p)"~*. You should graph this
as a function ofp for your favorite values ok andn; it will look much like the
curve in the Poisson case. It will be convenient for some purposes to rearrange ou

likelihood as
Low = (1) (525) a-or.

Once again, there are exponents, so we will want to take logarithms to make the
maximum easier to find. We do this so often that we may as well have some
notation: thdog-likelihood is I(x|0) = log L(x|6). In the binomial case, this is

I(plx) = log (") +xlog—L— 4 nloga— p).
X 1-p

Our rearrangement has broken it into three terms: one involving only the data,
one involving both the data and the parameter, and the third involving only the
parameter. You will notice that the log-likelihood for the Poisson problem broke
up in the same way. Also, the middle term involveslibgit, which was important
in Chapter 1 (see 1.7.3).

To find a maximum likelihood estimate fgr, we will differentiate! with p
as the variable and set this derivative equal to zero. Remembering thie!fpplag
log p—log(1— p), we obtain p/(p|x)]/(dp) = (x/p)+x/(1—p)—n/(1—p) = 0.
You should take the second derivative to check that it is in fact the maximum.
Adding the first two terms, we obtaity(p(1 — p)) = n/(1 — p); multiply both
sides byp(1 — p)/n, and we have the maximum likelihood estimg@te= x/n.
Reassuringly, this is the sample proportion that was our standard estimate for the
multinomial proportions models (see 1.7.1).

Proposition.

(i) For B(n, p) data x, the maximum likelihood estimateis p = x/n;
(i) For NB(k, p) data x, the maximum likelihood estimateis p = x/(x + k).

You should derive (ii) as an exercise. Notice that the negative binomial estimate
is still the sample proportion of successes, even though our stopping rule was
different.
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We justified the method of maximum likelihood by imagining that at the begin-
ning all possible estimates were equally likely. If we believe the parameter to have
more complicated prior probabilities (instead of just discrete uniform ones), then
we would still use the likelihood in Bayes’s theorem but might come to different
conclusions about which values were most probable after the experiment. This is
a sort of Bayesian estimation that uses the postenamle (most probable value)
instead of the posterior mean that we used in (7.8.2).

8.3 The Likelihood Ratio and the G-Squared Statistic

8.3.1 Ratio of the Maximum Likelihood to a Hypothetical
Likelihood

Now that we have an estimate of the parameter from the data, we have a naturs
measure for how close a proposed value of the parameter is to that closest value
We simply take the likelihood ratio of the probability at the maximum to the
probability at the proposed value: B(= % Notice that always RY) > 1,
because the numerator is the largest possible value of L.

Example. A referee flips a purportedly fair coin 100 times and it lands heads
55 times. Should we be surprised by the apparent preference for heads? Usin
a binomial B(100 p) model, the claim that the coin is fair says that= 0.5,

while the maximum likelihood estimate 5 = 0.55, we find a likelihood ratio
R(05) = [(£)0.55%°0.45%] /[ (13)0.5%%0.5%] = 1.65. So the observed value is
only g as likely at maximum as at the fair value. We seem to have little reason to
believe the coin to be unfair.

If we plot R(p), we get a curve of much the same shape as we did above
for the Poisson likelihood as a function df(except, of course, upside down).
We have noticed that the calculus is easier for log-likelihoods, which inspires
us to try to understand the curve better by plotting its logarithm, Igg RE
xlog2 + (n — x)log =2 = (sohd curve in Figure 8.2). This sort of shape should
now look familiar: It is very like a parabola (dotted curve). This is appealing,
because we would like to use this as a distance measure, and SSE was parabol
as a function of parameters when we were doing least-squares fitting.

To compute the matching exact parabola, notice that the minimum value, zero, is
at p, and of course, the first derivative is zero there (because it is a minimum). The
second derivative, with our computed value fosubstituted in, is/(p(1 — p)).

The parabola that almost matches our curve is them)?)/(2p(1 — p)) (the 2
appears when you differentiate the square). Now we can take exponentials to get ric
ofthe logarithme”(P=7*/@(1=P) ~ L( p|x)/L(p|x); and solve for the approximate
shape of the binomial likelihood curve px) & L( p|x)e"(P—PY*/2P1=P) This is

an equation for the famousrmal curve, which appears everywhere in statistics.
As an exercise, you should derive the approximate normal curve for the Poissor
likelihood.
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83.2 G-Squared

We are ready to define the analog of the SSE for the distance from a model to the
data as measured by likelihood:

Definition. Thelikelihood ratio chi-squared statistic is

3= 21(6]x) — 2/(0)X).

The factor of 2 has the effect of canceling the 2 that appeared in the denominator
in our parabolic approximation above. We will shortly see historical reasons for
calling it G-squared. For now, it is reassuring that since the likelihood ratio is at
least 1, our new statistic is always at least zero, as we would expect for a square.

In the binomial case,

1-p
1-p

In the coin flipping example, we find thaf(@®.5) = 1.002.

When we started, we assumed that we knew the parameter in the model; in this
case G-squared is ameasure of how far away the data varied by chance fromiits ide:
value. If it is too large, of course, we begin to think that something went wrong,
either in our experiment or in our assumption about the value of the parameter.
In our parabolic approximation to a binomial likelihood ratio, let us assume that
the sample proportiop is a reasonably accurate estimate of the true valuet
least good enough to estimate the denominat— p). Then our approximate G-
squared is given byi(p — p)?)/(5(1~ p)) ~ (n(p — p)*)/(p(1— p)) by adjusting
the denominator. But sincé = X/n, we get that Ef) = E(X)/n = np/n = p
from the expectation of a binomial. Similarly, Vé= p(1 — p)/n. Combining

G2(p) = 2xlog £ + 2(n — x)log — 2xlog -~ +2(n — x)log ——*
p np n

1-p)
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these two, we find that Bj(p — p)?)/(p(1 — p))] = 1. So a typical value of the
binomial G-squared is something like 1. In our coin-tossing example, 55 heads
turns out to be a thoroughly typical deviation from middle of fair-coin behavior.

If you try to calculate the expected value of G-squared exactly, it may bother you
that our discrete models each have a finite, but usually tiny, probability that some
category (e.qg., either successes or failures) has exactly zero counts. But log(0) i
negatively infinite. However, what you should really be calculating in those cases
is 0log(0); to see what that should be, find Jioy x log(x) by L'Hospital’s rule
(exercise). Your answer will be zero; and this causes no problem with the existence
of the expectation.

8.4 G-Squared and Chi-Squared

8.4.1 Chi-Sguared

Let us stare more carefully at the approximation to the binomial G-squared. Notice

i 1 _ 1, 1
first thatp(lfp) =+ + 1,80

n(p—py* _n(p—p)?  np—pP _n(p-p)?  nl@-p)—@1-p)
= + = +
p(1—p) p 1-p p 1-p
where in the second term we rearranged the numerator to have)'$ to match
the denominator. Now multiply numerator and denominaton bgnd pull then

inside the square:

_ (p—npy  [n(1—p)—n(d—p)?
np n(l—p)
Let p = X/n so that
_ (X =np)* [n—X-n(l-p)?
np n(1—p)
We can interpret this as two terms, one each for the success and failure categorie:
In each category, from the observed count we subtract its expectation and ther
square. Finally, we divide by its expectation. This is a sort of weighted, squared
Euclidean distance between theory and observation in vectors of cell counts. It

is promising that our new measure of distance is roughly parallel to the sum of
squares from least-squares theory. Generally, we have the following situation:

I

Definition. Given an experiment withk cells, E; the expected count in thigh
cell under some model, and observed coOpin that cell, then the (Pearson’s)
chi-squared statistic for measuring thgoodness of fit of that model isx? =
>i_1(0i — Ei/E;.

(Do you recall this from the Introduction?) This measure of distance dates from
the turn of the century and is perhaps the firstimportant example of a test statistic.
The approximation to G-squared discussed above is the chi-squared statistic fo
fit to a B(n, p) model.
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8.4.2 Comparing the Two Satistics

We will now worry about just when chi-squared is a good approximation to G-
squared.

The likelihood ratio statistic for a Poissar)(experiment with observed count
x is G? = 2log[x*e™) /(A e™*] = 2[x Iog — (x — A)]. By judicious addition
and subtraction, express @ terms ofx —

GZ=2{[A+(x—A)]|Og<1+T>—(x—k)}.

Now by factoring out. we can express everything in terms of the relative error
r= 2.[(1+ 5%) log (1+ %) — 2],

We Want to establish how nearly the part in bracketsi () log(1+r) — r, is
a parabola with minimum value 0 at 0. To do this, we will come up with a lemma
much like the basic inequality for the logarithm in Chapter 3 (see 3.5.1). First
notice that our expression is simpler than it looks. Take its derivative to get

[(A+7)log(l+r) —r] =log(d+r).

Therefore, we can express it as an integral:
S1

(1+r)|0g(1+r)—r—/ Iog(1+s)ds—f/ 2

since the logarithm itself can be expressed as the inner integral. As we have don
earlier, break up 1/(% 1) = 1 —t/(1 + 1), so thatf; [;(dr)/(1 + 1)ds =

Jo Jo 1drds — [3 [5(dr)/(1 + ) ds. The first double integral immediately can

be solved as?/2; we have our parabola.

The second double integral is the error in our approximation, so our remaining
work will be to get some idea of how big it is. First, consider the e¢ase0; then
1/(141) < 1,andfy [ (zdt)/(1+1)ds < [y [, tdeds = r3/6. Furthermore, it is
alsotrue that 1/(%¢) > 1/(1+r). Then

eanasods = [ i@+ rdeds = 1260+ ).
0 JO 0 JO

Therefore,

3 2 }’3

,
> [(1 log(1 —rl-=>—-—=.
~siiy = @+ nlg+n -] .
On the other hand, if < 0, we have to reverse the limits of both integrals, leaving
the sign unaffected. We get exactly the same interval. We summarize our result:

Theorem (quadratic approximation to the log-likelihopd For any r > —1,
the difference between (1 + r)log(1 + r) — r and r?/2 is between —r3/6 and
—r3/(6(1+r)).

This says that theglative error in the approximation of (t r) log(1+r) — r by
r?/2is smallifr/3 andr/(3(1+r)) are both small in size. Recalling the definition
of r, this says that (x- 1)/(31) and & — 1)/(3x) are close to zero; informally,
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the approximation works it anda are both fairly good relative approximations
to each other.

8.4.3 Multicell Poisson Models

If we have a contingency table with celis= 1, ..., k, cell countsx;, and a
model in which the cells are independent Poisson variables with meatisen
the likelihood ratio is given by

T Lalx) o LGalx)
RO = [Ty Lilx) a l_[ 1 L(Rilxi) l_[ R@).

Butthen @ = 2logR(\)= Y_*_, 2log R(%).

On the other hand, the chi-squared statistic happens to have a simple interprete
tion. We imagine that wetandardizethe countin each celt; = (x;— E(x;))/oy, =
(xi — X;)/+/2:, each of which has expectation 0 and variance 1. Now notice that
the sum of squares of the is chi-squaredy? = Zf-‘zl 2= Zf‘:l(x,- — X)) /A
Both G-squared and chi-squared are sums of cellwise distance measures. Use tt
theorem above to compare them cell by cell:

Theorem (equivalence of G-squared and chi-squaredn an independent Pois-
son model for a contingency table, G ~ x2 when all (0, — E;)/(3E;) and
(0; — E;)/(30;) are close to zero.

Example. Historical records indicate that Louisiana, Mississippi, and Alabama
have an average of 25, 42, and 27 documented tornadoes per year. Last year, the
were 31, 45, and 35. Was this a surprising result? We assume independence
the states (questionable, but we do not know what else to do) and compute G
1.3369+0.2094+2.1658= 3.7120. Alsoy? = 1.44+0.2143+2.3704= 4.0247.

The two statistics differ by less than 10%. This is consistent with our theorem, as
the largest of the error bounds, for Alabama, i8988. Since the expected value

of chi-squared under the Poisson model was 3 (adding one for each state), we ha
an unlucky, but not really surprising, year.

8.4.4 Multinomial Models

If you remember Chapter 1, you are probably thinking that the previous theorem
is uninteresting, because most of our models for contingency tables were based o
multinomial proportions. This presumably means that we had some sort of multi-
nomial sampling design, notindependent Poisson. Fortunately, this difference will
not matter. For the multinomial case, all the factorials cancel out in the likelihood

ratio, and we get

G2 =2lo Hlklﬁ'x'— k p
= 2log = Z Iog _ZZx,

lll i=1
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where we used the standard multinomial proportions estimatg;fafYou will

check as an exercise that these are the maximum likelihood estimates.) Sinc
E(X;) = np;, thislooks remarkably like the G-squared for the Poisson case, except
for a missingx — A term. But we will sneakily introduce that term: Remember that

in a multinomial distributiory"*_, p; = 1. ThenY"*_, np; =n = Y*_, x;. So

_z<zx, Zx,+znp,> _zz[x,

by subtracting and adding. Now it ex