# FEDERAL PUBLIC SERVICE COMMISSION



## **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011**

Roll Number

### **PHYSICS, PAPER-I**

| TIME          | E ALLOWED:                                                                                                 | (PART-I MCQs)                                    | 30 MINUTES                                    |                         | MAXIMUM MARKS: 20  |                   |                     |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------|--------------------|-------------------|---------------------|--|--|--|
| THREE HOURS   |                                                                                                            | (PART-II)                                        | 2 HOURS & 3                                   |                         |                    | MAXIMUM MARKS: 80 |                     |  |  |  |
| NOT           |                                                                                                            | tempt PART-I (MCQs)                              | _                                             | er Sheet v              | which shall be     | taken back        | after 30 minutes.   |  |  |  |
|               | ` '                                                                                                        | scientific calculator i<br>riting/cutting of the |                                               | will not                | he given cre       | dit.              |                     |  |  |  |
|               | (III) SVELVI                                                                                               |                                                  | T-I MCQs) (CO                                 |                         |                    | <u>uit.</u>       |                     |  |  |  |
| Q.1.          | Select the best                                                                                            |                                                  |                                               |                         |                    | er Sheet          | (1 x 20=20)         |  |  |  |
| <b>V.1.</b>   | 2.1. Select the best option/answer and fill in the appropriate box on the Answer Sheet. (1 $\times$ 20=20) |                                                  |                                               |                         |                    |                   |                     |  |  |  |
| (i)           | The angular mo                                                                                             | omentum of a particle                            | moving under the                              | e influenc              | ce of a centra     | l force is:       |                     |  |  |  |
|               | (a) Infinite                                                                                               | (b) Negative                                     | (c) Z                                         | ero                     | (d)                | Constant          |                     |  |  |  |
| (ii)          | 2                                                                                                          | ponent of the central                            | _                                             | •                       | -                  | ving along        | a circular path is: |  |  |  |
|               | (a) $mv^2r$                                                                                                | (b) $mv^2/r$                                     | (c) Z                                         | ero                     | (d)                | Constant          |                     |  |  |  |
| (iii)         |                                                                                                            | can be defined in:                               |                                               |                         |                    |                   |                     |  |  |  |
|               | ` '                                                                                                        | . ,                                              | n accelerated sys                             | ` ′                     | Both (a) ar        | nd (b)            | (d) None of these   |  |  |  |
| (iv)          |                                                                                                            | particle executing a u                           |                                               |                         |                    |                   |                     |  |  |  |
|               | (a) Increases                                                                                              | · /                                              | ecreases                                      | (c)                     | Remains sar        | ne (              | (d) None to these   |  |  |  |
| (v)           |                                                                                                            | orce acts on a raindrop                          | _                                             |                         |                    | -                 | (A) D               |  |  |  |
| . •           | (a) Gravitatio                                                                                             | · /                                              |                                               | ` '                     | ctromagnetic       |                   | (d) Drag Force      |  |  |  |
| (vi)          |                                                                                                            | neat relating to the mea                         |                                               |                         | <u> </u>           |                   | (1) 0.1             |  |  |  |
| <i>(</i> ···) | (a) Thermom                                                                                                | • , ,                                            | otometery                                     | (c)                     | Ellipsometer       | ry (              | (d) Calorimetry     |  |  |  |
| (vii)         | Which type of i                                                                                            | deal gas will have the                           | largest value for                             | $C_p - C_{vi}$          | <sub>i</sub> ?     |                   |                     |  |  |  |
|               | (a) Monoator                                                                                               | nic (b) Diatomic                                 | (c) Polyato                                   | omic                    | (d) The va         | lue will be       | the same for all    |  |  |  |
| (viii)        | What would be                                                                                              | the most likely value                            |                                               | •                       | -                  | -                 |                     |  |  |  |
|               | (a) Zero                                                                                                   | (b) $Zero < C$                                   | $_{\mathrm{T}} < \mathrm{C}_{\mathrm{V}}$ (c) | $C_{V} < C$             | $C_T < C_P$        | (d) $C_T =$       | infinite            |  |  |  |
| (ix)          | For which of th                                                                                            | e following process th                           | ne entropy change                             | e Zero?                 |                    |                   |                     |  |  |  |
|               | (a) Isoberic                                                                                               | (b) Is                                           | othermal                                      | (c)                     | Adiabatic          | (d) Con           | stant volume        |  |  |  |
| (x)           | The zeroth law                                                                                             | of thermodynamics he                             | elps to define the                            | term:                   |                    |                   |                     |  |  |  |
|               | (a) Temperate                                                                                              | ure (b) P                                        | ressure                                       | (c)                     | Volume             | (d)               | Density             |  |  |  |
| (xi)          | The law of cons                                                                                            | servation of mass in fl                          | uid dynamics car                              | n be expre              | essed as:          |                   |                     |  |  |  |
|               | (a) $Av = cons$                                                                                            | stant (b) $\rho Av = co$                         | onstant (c) P                                 | $+1/2\rho^{V}+\rho^{V}$ | ogy = constar      | nt (d)            | None of these       |  |  |  |
| (xii)         | The SI units of                                                                                            | viscosity is:                                    |                                               |                         |                    |                   |                     |  |  |  |
|               | (a) $N-S/m^2$                                                                                              | (b) D                                            | ynes-S/cm <sup>2</sup>                        | (c)                     | N-S/m              | (d                | ) Dynes-S/cm        |  |  |  |
| (xiii)        | The equation of                                                                                            | f continuity requires the                        | nat the total mass                            | within ce               | ertain volume      | e must rem        | ain constant:       |  |  |  |
|               | (a) If there ar                                                                                            | re sources as well as si                         | nks                                           | (b)                     | If there are r     | no sources        | & sinks             |  |  |  |
|               | (c) If there ar                                                                                            | e sources only                                   | (d) If there are                              |                         |                    | •                 |                     |  |  |  |
| (xiv)         | _                                                                                                          | The "L" and the total                            | _                                             |                         |                    | •                 |                     |  |  |  |
|               | (a) F x L                                                                                                  | (b) F.                                           |                                               | ` '                     | F/L                | ,                 | ) L/F               |  |  |  |
| (xv)          |                                                                                                            | f liquid which pass the that passed the same     |                                               |                         |                    |                   | as that followed    |  |  |  |
|               | (a) Steady flo                                                                                             | ow (b) Non s                                     | steady flow (c                                | c) Turb                 | ulent flow         | (d)               | None of these       |  |  |  |
| (xvi)         | The potential en                                                                                           | nergy of a simple harn                           | nonic oscillator is                           | S                       |                    |                   |                     |  |  |  |
|               | (a) -Kx                                                                                                    | (b) -H                                           | $\zeta x^2$                                   | (c)                     | $1/2 \text{ Kx}^2$ | (d)               | $-1/2 \text{ Kx}^2$ |  |  |  |

## PHYSICS, PAPER-I

(xvii) Types of the mechanical waves are:

|         | (a)                                                                                                                                                                                                                                                                                                     | Longit                                                                                                                                                                                                                                                                                                                                                           | udinal & sound waves                                                                                          | (b)              | Sound & radio way      | ves         |         |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|------------------------|-------------|---------|--|--|--|--|
|         | (c) Longitudinal & transverse waves (d) Transverse & x-rays                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                  |                        |             |         |  |  |  |  |
| (xviii) | The r                                                                                                                                                                                                                                                                                                   | efracted                                                                                                                                                                                                                                                                                                                                                         | d ray bends towards the normal when                                                                           | n it enters from | n:                     |             |         |  |  |  |  |
|         | (a)                                                                                                                                                                                                                                                                                                     | Rare to                                                                                                                                                                                                                                                                                                                                                          | denser medium                                                                                                 | (b)              | Denser to rare med     | lium        |         |  |  |  |  |
|         | (c)                                                                                                                                                                                                                                                                                                     | Air to                                                                                                                                                                                                                                                                                                                                                           | vacuum                                                                                                        | (d)              | None of these          |             |         |  |  |  |  |
| (xix)   | On a                                                                                                                                                                                                                                                                                                    | reflecti                                                                                                                                                                                                                                                                                                                                                         | on from a fixed end, a transverse wa                                                                          | ve undergoes     | a phase change of:     |             |         |  |  |  |  |
|         | (a)                                                                                                                                                                                                                                                                                                     | 90°                                                                                                                                                                                                                                                                                                                                                              | (b) 180°                                                                                                      | (c)              | 270°                   | (d) 360°    |         |  |  |  |  |
| (xx)    | Resol                                                                                                                                                                                                                                                                                                   | ving po                                                                                                                                                                                                                                                                                                                                                          | ower of a diffraction gratting can be                                                                         | written as:      |                        |             |         |  |  |  |  |
|         | (a) $\lambda/\Delta\lambda$ (b) $\Delta\theta/\Delta\lambda$ (c) $\Delta\lambda/\lambda$ (d) $\Delta\lambda/\Delta\theta$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                  |                        |             |         |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | PAI                                                                                                           | RT-II            |                        |             |         |  |  |  |  |
| NOT     | E:(i)                                                                                                                                                                                                                                                                                                   | PAF                                                                                                                                                                                                                                                                                                                                                              | <b>RT-II</b> is to be attempted on separate                                                                   | Answer Book      |                        |             |         |  |  |  |  |
|         | (ii)                                                                                                                                                                                                                                                                                                    | Atte                                                                                                                                                                                                                                                                                                                                                             | mpt ONLY FOUR questions from                                                                                  | PART-II. A       | ll questions carry E   | EQUAL ma    | rks.    |  |  |  |  |
|         | (iii)                                                                                                                                                                                                                                                                                                   | Extr                                                                                                                                                                                                                                                                                                                                                             | a attempt of any question or any par                                                                          | t of the attemp  | ted question will not  | be consider | ed.     |  |  |  |  |
| Q.2.    | (a)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  | do the unit vectors $\mathbf{i}$ . $\mathbf{j}$ . and $\mathbf{k}$ have adrical and spherical coordinate syst |                  |                        | he          | (3,3,4) |  |  |  |  |
|         | (b) Elaborate the hybrid nature of the operator $\overline{V}$ . Write the expansion of $\overline{V} \cdot \overline{V} \mathbf{V}$ , where $\mathbf{V}$ is a vector quantity.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                  |                        |             |         |  |  |  |  |
| Q.3.    | (a)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  | an object be increasing in speed as inple; if not explain why.                                                | ts acceleration  | n decreases? If so, gi | ve an       | (3,3,4) |  |  |  |  |
|         | <b>(b)</b>                                                                                                                                                                                                                                                                                              | State Kepler's Law of planetary motion. An Earth satellite, in circular orbit at an altitude <i>h</i> of 230 km above the Earth's surface, has a period <i>T</i> of 89 min. What mass of the Earth follows from these data?                                                                                                                                      |                                                                                                               |                  |                        |             |         |  |  |  |  |
| Q.4.    | (a)                                                                                                                                                                                                                                                                                                     | (a) State the relativistic effect on mass, length and time. Describe the Einstein's postulates of relativity.                                                                                                                                                                                                                                                    |                                                                                                               |                  |                        |             |         |  |  |  |  |
|         | <b>(b)</b>                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  | t is the total energy <b>E</b> of a 2.53- <b>Me</b> ctive, it refers to the kinetic energy of                 | `                |                        |             | (8)     |  |  |  |  |
| Q.5.    | (a)                                                                                                                                                                                                                                                                                                     | State Bernoulli's Theorem. A spherical, helium-filled balloon has a radius $\mathbf{R}$ of 12.0 m. The balloon, support cables and basket have a mass $m$ of 196 kg. What maximum load $\mathbf{M}$ can the balloon carry? Take density of helium = 0.160 kg/m <sup>3</sup> and <i>density of</i> $air = 1.25 \text{ kg/m}^3$                                    |                                                                                                               |                  |                        |             |         |  |  |  |  |
|         | <b>(b)</b>                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  | fly describe the concept of surface to on of a liquid experimentally?                                         | ension? How o    | can you evaluate the   | surface     | (4,6)   |  |  |  |  |
| Q.6.    | (a)                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  | erentiate between the phase velocity to measure the speed at which bloo                                       |                  | _                      |             | (4,6)   |  |  |  |  |
|         | <b>(b)</b>                                                                                                                                                                                                                                                                                              | Use                                                                                                                                                                                                                                                                                                                                                              | Maxwell's equations to derive the e                                                                           | lectromagnetion  | c wave equation.       |             | (10)    |  |  |  |  |
| Q.7.    | (a)                                                                                                                                                                                                                                                                                                     | Why does the boiling temperature of a liquid increase with pressure? A bubble of 5.0 mol of helium is submerged at a certain depth in liquid water when the water undergoes a temperature increase VT of 20°C at constant pressure. As a result the bubble expands. How much heat <i>Q</i> is added to the helium during the expansion and temperature increase? |                                                                                                               |                  |                        |             |         |  |  |  |  |
|         | (b) Two blocks of copper, the mass m of each being 850 g, are put into thermal contact in an insulated box. The initial temperatures of the two blocks are 325 K and 285 K and the constant heat c of capacity of copper is 0.386 J/g.K. What is the final equilibrium temperature T of the two blocks? |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |                  |                        |             |         |  |  |  |  |
| Q.8.    | Write                                                                                                                                                                                                                                                                                                   | notes                                                                                                                                                                                                                                                                                                                                                            | on <b>ANY TWO</b> of the following:                                                                           |                  |                        |             | (10,10) |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                         | (a)                                                                                                                                                                                                                                                                                                                                                              | Michelson-Morely experiment                                                                                   |                  |                        |             |         |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                         | (b)                                                                                                                                                                                                                                                                                                                                                              | Travelling waves and standing wa                                                                              | ives             |                        |             |         |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                         | (c)                                                                                                                                                                                                                                                                                                                                                              | Gyroscope                                                                                                     |                  |                        |             |         |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | **                                                                                                            | *****            |                        |             |         |  |  |  |  |

# FEDERAL PUBLIC SERVICE COMMISSION



TIME ALLOWED: (PART-I MCQs)

## COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

**MAXIMUM MARKS: 20** 

### **PHYSICS, PAPER-II**

**30 MINUTES** 

| THR    | EE HOURS                                                                   | (PART-II)         |        | 2 HOURS & 30 N                 | JINI    | JTES MAX                           | IMUN     | MARKS: 80      |  |
|--------|----------------------------------------------------------------------------|-------------------|--------|--------------------------------|---------|------------------------------------|----------|----------------|--|
| NOT    |                                                                            |                   |        | Qs) on separate Answer S       | Sheet v | which shall be taken be            | ack aft  | er 30 minutes. |  |
|        | · /                                                                        | scientific calcu  |        |                                |         |                                    |          |                |  |
|        | (iii) Overwriting/cutting of the options/answers will not be given credit. |                   |        |                                |         |                                    |          |                |  |
|        |                                                                            | !                 | (PA    | RT-I MCQs) (COMP               | ULS     | <u>ORY)</u>                        |          |                |  |
| Q.1.   | Select the best                                                            | option/answer     | and    | fill in the <b>appropriate</b> | box     | on the <b>Answer Shee</b>          | et.      | (1 x 20=20)    |  |
| (i)    | The Lorentz fo                                                             | orce is the sum o | of:    |                                |         |                                    |          |                |  |
|        | (a) Gravitation                                                            | onal and centrip  | etal   | force                          | (b)     | Electric and magne                 | tic for  | ce             |  |
|        | (c) Magnetic                                                               | and nuclear for   | rce    |                                | (d)     | Electric and nuclea                | r force  | <b>;</b>       |  |
| (ii)   | The area under                                                             | the hysteresis l  | oop    | is proportional to:            |         |                                    |          |                |  |
|        | (a) Magnetic                                                               | energy density    |        |                                | (b)     | Thermal energy per                 | r unit v | volume         |  |
|        | (c) Electrical                                                             | l energy per unit | t vol  | ume                            | (d)     | Mechenical energy per unit volume  |          |                |  |
| (iii)  | The frequency                                                              | of A.C is measu   | ured   | using:                         |         |                                    |          |                |  |
|        | (a) Multimet                                                               | er (              | (b)    | Avometer                       | (c)     | Tachometer                         | (d)      | Speedometer    |  |
| (iv)   | $\Delta$ .E= $\rho/\epsilon_0$ is cal                                      | led:              |        |                                |         |                                    |          |                |  |
|        | (a) Gauss's l                                                              | aw (b) Fa         | ırada  | y's law (c)                    | Amp     | pere 's law (d)                    | Boit ar  | nd savart law  |  |
| (v)    | For computation                                                            | on of the rate at | whic   | ch the dipole radiates e       | nergy   | , the interaction of the           | ne nori  | mal component  |  |
|        |                                                                            | ne over sphere o  |        |                                |         |                                    |          | -              |  |
|        | (a) Electric f                                                             | field (b)         | F      | Pointing vector                | (c)     | Addition vector                    | (d)      | Radiation      |  |
| (vi)   | Semiconductor                                                              | material have _   |        | _ bonds:                       |         |                                    |          |                |  |
|        | (a) Ionic                                                                  | (b)               | ) (    | Covalent                       | (c)     | Mutual                             | (d)      | Metallic       |  |
| (vii)  | The depletion i                                                            | region of a p-n j | unct   | ion is formed:                 |         |                                    |          |                |  |
|        | (a) During th                                                              | ne manufacturing  | g pro  | ocess                          | (b)     | When forward bias is applied to it |          |                |  |
|        | (c) Under rev                                                              | verse bias        |        |                                | (d)     | When its temperatu                 | ire is r | educed         |  |
| (viii) | The current am                                                             | plification facto | or al  | pha dc is given by:            |         | _                                  |          |                |  |
| ` ,    |                                                                            | (                 |        |                                | (c)     | $I_{\rm B}/I_{\rm E}$              | (d)      | $I_B/I_C$      |  |
| (ix)   | In amplitude m                                                             | odulation:        |        |                                |         |                                    |          |                |  |
|        | (a) Carrier fr                                                             | equency is char   | nged   |                                | (b)     | Carrier amplitude is               | s chan   | ged            |  |
|        | (c) Three sid                                                              | lebands are prod  | luce   | d                              | (d)     | Fidelity is improved               |          |                |  |
| (x)    | Demodulation:                                                              | <del>-</del>      |        |                                |         |                                    |          |                |  |
|        | (a) is perform                                                             | ned at the transr | mitti  | ng station                     | (b)     | removes side bands                 | S        |                |  |
|        | . , .                                                                      | modulation sign   |        |                                | (d)     | is opposite of modulation          |          |                |  |
| (xi)   | ` '                                                                        | <b>C</b>          |        | es will have the greates       | ` /     |                                    |          |                |  |
| ( )    | (a) $K_{\alpha}$                                                           |                   |        | $K_{\beta}$ (c) L <sub>o</sub> |         |                                    |          | e element      |  |
| (xii)  |                                                                            |                   |        | sequence of plank's de         |         |                                    |          |                |  |
| (AII)  |                                                                            |                   |        | nd absorb energy at dis        |         |                                    |          |                |  |
|        |                                                                            |                   |        |                                |         | -                                  |          |                |  |
|        | ` '                                                                        |                   | ııı al | nd absorb energy at dis        |         | -                                  |          |                |  |
| (w:::) | (c) Both (a)                                                               |                   |        | n of the clastus:: 11          | (d)     | Neither (a) nor (b)                |          |                |  |
| (xiii) |                                                                            |                   |        | n of the electron is call      |         |                                    | (1)      | NI C/1         |  |
| (: \   | (a) Anomalo                                                                |                   | (b)    | Normal                         | (c)     | Paschen                            | (d)      | None of these  |  |
| (xiv)  |                                                                            | rgy of harmonic   |        |                                | ( )     |                                    | (1)      | . 2            |  |
|        | (a) ħ w                                                                    | (                 | (d)    | ħw/2                           | (C)     | Zero                               | (d)      | n w            |  |

| <b>PHY</b> | SICS                                                                                                                                                                                                                                                                                                                                                                                 | S, PAP                                                                                                                                                                                                   | ER-II       |              |                                        |                |              |                                   |                  |                   |             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------------------------------|----------------|--------------|-----------------------------------|------------------|-------------------|-------------|
| (xv)       |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |             |              |                                        |                | 1 fermi      | ons, the total _                  | is antisymme     | is antisymmetric: |             |
|            | (a)                                                                                                                                                                                                                                                                                                                                                                                  | Matrix                                                                                                                                                                                                   |             |              | (b)                                    | Wave fur       | nction       | (c)                               | Operator         | (d) Tens          | sor         |
| (xvi)      | The d                                                                                                                                                                                                                                                                                                                                                                                | lecay rat                                                                                                                                                                                                | te of a rad | ioactiv      | e sou                                  | irce is mea    | sured in u   | nits of:                          |                  |                   |             |
|            | (a)                                                                                                                                                                                                                                                                                                                                                                                  | Curies                                                                                                                                                                                                   |             | (b)          | Ro                                     | entgens        |              | (c)                               | Rads             | (d) Rems          |             |
| (xvii)     | -                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |             | _            |                                        | ally radioa    |              |                                   |                  |                   |             |
|            | (a) They come originally from radioactive <sup>235</sup> U                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          |             |              |                                        |                | (b)          | They have a large neutron excess  |                  |                   |             |
|            | (c) They have a large binding energy per nucleon                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                          |             |              |                                        |                | (d)          | (d) They are moving at high speed |                  |                   |             |
| (xviii)    | In a n                                                                                                                                                                                                                                                                                                                                                                               | uclear r                                                                                                                                                                                                 | eactor, the | functi       | ion o                                  | f the mode     | erator is:   |                                   |                  |                   |             |
|            | (a)                                                                                                                                                                                                                                                                                                                                                                                  | to abso                                                                                                                                                                                                  | rb neutroi  | ıs           |                                        |                | (b)          | to k                              | eep the reactor  | from going critic | al          |
|            | (c) to slow down the neutrons (d)                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |             |              |                                        |                |              | to al                             | bsorb heat from  | n the core        |             |
| (xix)      | What is the main difficulty associated with the fusion process as a source of electrical power?                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |             |              |                                        |                |              |                                   |                  |                   |             |
|            | (a)                                                                                                                                                                                                                                                                                                                                                                                  | The sca                                                                                                                                                                                                  | rcity of fu | el           |                                        |                |              | (b)                               | The coulomb      | barrier           |             |
|            | (c)                                                                                                                                                                                                                                                                                                                                                                                  | The rad                                                                                                                                                                                                  | ioactivity  | of the       | prod                                   | ucts           |              | (d)                               | The danger of    | of an explosion.  |             |
| (xx)       | Bindi                                                                                                                                                                                                                                                                                                                                                                                | ng ener                                                                                                                                                                                                  | gy of a de  | uteron       | is                                     |                |              |                                   |                  |                   |             |
|            | (a)                                                                                                                                                                                                                                                                                                                                                                                  | 2.22 Me                                                                                                                                                                                                  | ev          |              | (b)                                    | 2.80 Mev       | 7            | (c)                               | 2.3 Mev          | (d) None          | of these    |
|            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |             |              |                                        | <u>P</u>       | ART-II       |                                   |                  |                   |             |
| NOTI       | 7.(1)                                                                                                                                                                                                                                                                                                                                                                                | DAD                                                                                                                                                                                                      | T II is to  | ha atta      | ······································ | d on gone      | rata Angyya  | r Dool                            | ,                |                   |             |
| NOTI       | د.(۱)<br>(ii)                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |             |              | -                                      | -              | rate Answe   |                                   |                  | arry EQUAL ma     | rke         |
|            | (iii)                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          | -           |              | -                                      |                |              |                                   | -                | tion will not be  | 1 K5.       |
|            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          | idered.     |              |                                        |                | <i>v</i> 1   |                                   |                  |                   |             |
| Q.2.       | (a)                                                                                                                                                                                                                                                                                                                                                                                  | How                                                                                                                                                                                                      | can an LI   | RC seri      | es ci                                  | rcuit made     | to find the  | e dielec                          | etric constant o | f a medium?       | (10)        |
|            | (b) A 1.5-mH inductor in an <i>LC</i> circuit stores a maximum energy of 17 <i>uj</i> . What is the peak current <i>I</i> ?                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |             |              |                                        |                |              | <i>uj</i> . What is the           | (10)             |                   |             |
| Q.3.       | (a)                                                                                                                                                                                                                                                                                                                                                                                  | Obtain Faraday's law of electromagnetic induction. Emphasize the role of the Lenz's law.                                                                                                                 |             |              |                                        |                |              |                                   |                  | (7, 3)            |             |
|            | (b)                                                                                                                                                                                                                                                                                                                                                                                  | A solenoid has length $L = 1.23$ m and inner diameter $d = 3.55$ cm. It has five layers of windings of 850 turns each and carries a current $\mathbf{i_0} = 5.57$ A. What is $\mathbf{B}$ at its center? |             |              |                                        |                |              |                                   |                  | (10)              |             |
| Q.4.       | (a)                                                                                                                                                                                                                                                                                                                                                                                  | Discuss and explain the common-base static characteristics.                                                                                                                                              |             |              |                                        |                |              |                                   |                  |                   | <b>(10)</b> |
|            | (b) Where did Rayleigh and Jeans go wrong? How did Planck radiation formula account for the discrepancy in the black body radiations                                                                                                                                                                                                                                                 |                                                                                                                                                                                                          |             |              |                                        |                |              | (3,7)                             |                  |                   |             |
| Q.5.       | (a)                                                                                                                                                                                                                                                                                                                                                                                  | Is the Compton effect more supportive of the photon theory of light than the photoelectric effect? Explain your answer.                                                                                  |             |              |                                        |                |              |                                   |                  | (4,6)             |             |
|            | (b) A bullet of mass 41 g travels at 960 m/s. What wavelength can we associate with it? Why does the wave nature of the bullet not reveal itself through diffraction effects?                                                                                                                                                                                                        |                                                                                                                                                                                                          |             |              |                                        |                |              |                                   |                  | (6,4)             |             |
| Q.6.       | (a)                                                                                                                                                                                                                                                                                                                                                                                  | How does the Rutherford orbital motion violate the classical physics?                                                                                                                                    |             |              |                                        |                |              |                                   |                  | (10)              |             |
|            | (b)                                                                                                                                                                                                                                                                                                                                                                                  | Discuss the modification suggested in the Bohr's atomic model to account for the nuclear motion and the hydrogenic atoms.                                                                                |             |              |                                        |                |              |                                   | ecount for the   | (10)              |             |
| Q.7.       | (a)                                                                                                                                                                                                                                                                                                                                                                                  | (a) In what basic ways do the so-called strong force and the electrostatic force differ? Explain your answer.                                                                                            |             |              |                                        |                |              |                                   |                  |                   | (10)        |
|            | (b) Analysis of Potassium and Argon atoms in a moon rock sample by a mass spectrometer shows that the ratio of the number of (stable) <sup>40</sup> Ar atoms present to the number of (radioactive) <sup>40</sup> K atoms is 10.3. Assume that all the Argon atoms were produced by the decay of Potassium atoms, with a half-life of 1.25 X 10 <sup>9</sup> y. How old is the rock? |                                                                                                                                                                                                          |             |              |                                        |                |              |                                   |                  | (10)              |             |
| Q.8.       | Write                                                                                                                                                                                                                                                                                                                                                                                | notes o                                                                                                                                                                                                  | n ANY T     | <b>WO</b> of | f the                                  | following:     |              |                                   |                  |                   | (10 +       |
|            |                                                                                                                                                                                                                                                                                                                                                                                      | (a)                                                                                                                                                                                                      | Schrödi     | nger's       | wave                                   | equation       | (b)          | Nı                                | uclear Fission   | and fusion        | 10 = 20)    |
|            |                                                                                                                                                                                                                                                                                                                                                                                      | c)                                                                                                                                                                                                       | Semicor     | nductor      | rs and                                 | d application* | Ons<br>***** |                                   |                  |                   |             |