

PHYSICS, PAPER-I

TIME ALI PART-I(M		D: THREE HOURS MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS MAXIMUM MARKS		
(iii) (iv) (v) (vi)	 DTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at d places. (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Pa 					
			PART-II			
Q. No. 2.	(a) (b) (c)	State and prove Stoke's theorem. Prove that if the vector is the gradient of a scalar function then its line integral around a closed curve is zero. A particle moves along the curve $\mathbf{x} = 2t^2$, $\mathbf{y} = t^2 - 4t$, $\mathbf{z} = 3t - 5$ where t is the time. Find the components of its velocity and acceleration at time t=1 in the direction $2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$				
Q. No. 3.		That is moment of inertia? State and prove parallel axis theorem.(1)alculate rotational inertia of a hollow cylinder about cylindrical axis.(1)				
Q. No. 4.	(a)	State and prove the Kepler's planetary motion.	law of areas and Ke	epler's law of periods of	(8)	
	(b)	A satellite orbits at a height of 230km above the Earth surface. What is the period of satellite?				
	(c)	At what altitude above the earth value at the surface of the earth		'g' is three quarters of its	(6)	
Q. No. 5.	(a)	What is diffraction grating? Exfor resolving power of grating.	xplain how grating diffi	racts light. Derive relation	(12)	
	(b)	What is meant by polarization by a polarizing sheet?	of light? How can we	get a plane polarized light	(8)	
Q. No. 6.	(a)	light is independent of the relative motion between the frames of reference.				
	(b)					
Q. No. 7.	(a) (b) (c)	Define Entropy. State Second la Discuss applications of First La Discuss briefly the Lissajous pa	w of thermodynamics.	in terms of Entropy.	(8) (6) (6)	
Q. No. 8.	Expla (a) (b) (c) (d)	in any FOUR of the following ter Doppler's Effect Bernoulli's theorem Newton's rings He-Ne Gas LASER Brownian motion	rms.	(05 each)	(20)	

Brownian motion

(e)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2016 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PHYSICS, PAPER-II

TIME AL	LOWED: THREE HOURS ICQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS MAXIMUM MARKS					
 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. (iv) Condidate must write Q. No. in the Answer Book in secondaria with Q. No. in the O. Boner. 								
 (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed. (vi) Extra attempt of any question or any part of the attempted question will not be considered. 								
(vii) Use of Calculator is allowed. PART-II								
Q. No. 2.	 (a) Define electric field intensity <i>E</i>. State its value for a point charge and give its units. (b) State differential form of Gauss's law and from there develops the poisson's & Laplace's equations. 							
	(c) A charge of $10\sqrt{2}$ Coulomb is located at $(3\hat{i} + 4\hat{j} + 5\hat{k})m$. Calculate the electric field intensity at a point having position vector $(5\hat{i} + 4\hat{j} + 3\hat{k})m$.							
Q. No. 3.	(a) Differentiate between a series and parallel resonant circuits.(b) Explain the construction and operation of a transformer. What are energy losses in a transformer and how are they reduced to a minimum.							
	(c) A series <i>LCR</i> circuit contains a coil with $L=2.25$ H, a capacitor having $C=16\mu$ F and a resistor with R=50 Ω . Calculate the impedance and the phase difference between current and voltage. (Take frequency $f = 50$ Hz)							
Q. No. 4.	(a) State and explain the basic postul(b) Briefly explain with examples what(c) Derive the time-dependent Schrod	do you mean by Eigen f	unction and Eigen values.	(5) (5) (10)				
Q. No. 5.	(a) Why the resistivity of metals incr decreases?	eases with temperature	but that of semiconductor	(6)				
	(b) In the process of making semic Germanium?			(4) (10)				
	(c) Briefly explain the construction and operation of a Bipolar Junction Transistor (BJT). How it can be used as an Amplifier?							
Q. No. 6.	 (a) What do <111>, [010], (111), and (b) What is packing factor? Determin (c) With neat diagram showing X-ray d 	e the Atomic Packing fa	ctor of FCC lattice.	(5) (5) (10)				
Q. No. 7.	Define Curie and Becquerel. Establish Calculate the Decay Constant for 14 C w State and explain Half-life and Mean greater than T _{1/2} .	which has half-life of 57	30 years.	(6) (4) (10)				