

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE:	(i) Attempt FIVE questions in all by selecting at least THREE questions from SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks	
	(ii) Use of Scientific Calculator is allowed.	
SECTION – A		
Q.1. (a)	Let W be a subspace of a finite dimensional vector space V, then W is finite dimensional and dim (w) \leq dim (v). Also if dim (w) = dim (V), then V = W. (10)	
(b)	Let V & W be vector space and let $T: V \rightarrow w$ be a linear if V is finite dimensional, then nullity (T) + rank (T) = dim v (10)	
Q.2. (a)	Show that there exist a homomorphism from S_n onto the multiplication group $\{-1,1\}$ of 2 elements $(n \ge 1)$ (7)	
(b)	If H is the only subgroup of a given finite order in a group G. Prove that H is normal in G (7)	
(c)	Show that a field K has only two ideals (namely K & (o)). (6)	
Q.3. (a)	Find all possible jordan canonical forms for 3x3 matrix whose eigenvalues are -2,3,3(10) $\begin{bmatrix} 1 & 3 & 0 \end{bmatrix}$	
(b)	Show that matrix $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (10)	
	is diagonalizable with minimum calculation	
0.4 . (a)	Every group is isomorphic to permutation group (7)	
(b)	Show that for $n \ge 3 Z(s_n) = I$ (6)	
(c)	Let A, B be two ideal of a ring, then $\frac{A+B}{A} = \frac{B}{A \cap B}$. (7)	
Q.5. (a)	Verify Cayley – Hamilton theorem for the matrix (7) $A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	
(b)	Prove that ring $A = Z$, the set of all integers is a principal ideal ring. (7)	
(c)	Under what condition on the scalar, do the vectors $(1,1,1)$, $(1,\xi,\xi^2)$, $(1,-\xi,\xi^2)$ (6) form basis of c^3 ?	
	SECTION – B	
Q.6. (a)	Show that $T.N. = 0$ for the helix (10)	
	$R(t) = (a\cos wt) \hat{z} + (a \sin wt) \hat{j} + (bt) \hat{k}$	
(b)	The vector equation of ellipse :r(t) = $(2 \cos t) i + (3 \operatorname{Sint}) j$; $(0 \le t \le 2\Pi)$ Find the eurvature of ellipse at the end points of major & minor axes. (10)	
Q.7. (a)	Discuss & sketch the surface (12) $x^2 + 4x^2 - 4x 4z^2$	
(b)	Show that an equation to the right circular cone with vertex at 0, axis oz & semi – vertical angle ∞ is $x^2+y^2=z^2 \tan^2 \infty$ (8)	
Q.8. (a) (b)	Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6) Find an equation of the plane which passes through the point $(3,4,5)$ has an x – intercept equal to -5 and is perpendicular to the plane $2x+3y-z = 8$. (8)	

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

Roll Number

PURE MATHEMATICS, PAPER-II

MAXIMUM MARKS:100

	(i) Attempt EWE questions in all by calesting at least THEEE questions from	
NOTE:	(1) Attempt FIVE questions in all by selecting at least THREE questions from SECTION–A and TWO questions from SECTION–B. All questions carry EQUAL	
	(ii) Use of Scientific Calculator is allowed	
01	<u>SECTION - A</u> If fig continuous on [a b] and if x is of bounded variation on [a b], then $f \in P(x)$ on [a, b] i.e. f	
Q.I. (a)	is Riemann – integrable with respect to α on [a b] (10)	
(b)	Let $\sum a$ be an absolutely convergent series having sum S, then every rearrangement of $\sum a$	
(0)	also converges absolutely & has sum S (10)	
Q.2. (a)	For what +ve value of P, $\int_{0}^{1} \frac{dn}{(1-x)^{p}}$ is convergent? (10)	
(b)	Evaluate $\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}$ (10)	
Q.3. (a)	Find the vertical and horizontal asymptotes of the graph of function:	
	$f(x) = (2x+3)\sqrt{x^2 - 2x + 3} $ (10)	
(b)	Let (i) $x = f(x) = (x+2)(x-1)$	
(0)	Let (1) $y = 1(x) = \frac{1}{(x-3)^2}$	
	(ii) $y = f(x) = (x-1)$ (10)	
	$(10) y - 1(x) - \frac{1}{(x+3)(x-2)} $ (10)	
	Examine what happens to y when $x \to -\infty$ & $x \to +\infty$	
Q.4. (a)	Find a power series about 0 that represent $\frac{x}{1-x^3}$ (6)	
(b)	Let \sum_{n}^{s} be any series, Justify. (5+5+4)	
	(i) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = r < 1$, then $\sum_{n \to \infty} s_n$ is absolutely convergent.	
	(ii) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = r$ and $(r > 1 \text{ or } r = \infty)$, then $\int_{n}^{\infty} diverges$.	
	(iii) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = 1$, then we can draw no conclusion about the convergence or	
	divergence.	

PURE MATHEMATICS, PAPER-II

Q.5. (a) Show that
$$\int_{0}^{1112} Sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}; m, n > 0$$
 (10)

(b) Prove that
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}; m,n,>0$$
 (10)

- Q.6. (a) Let A be a sequentially compact subset of a matrix space X. Prove that A is totally bounded. (10)
 - (b) Let A be compact subset of a metric space (X,d) and let B be a closed subset of X such that $A \cap B = \Phi$ show that d(A,B) > 0 (10)

<u>SECTION – B</u>

- **Q.7.** (a) Show that if tanZ is expanded into Laurent series about $Z = \frac{\Pi}{2}$, then (10)
 - (i) Principal is $\frac{-1}{z \Pi/2}$
 - (ii) Series converges for $0 < |Z \frac{\Pi}{2}| < \frac{\Pi}{2}$

(b) Evaluate
$$\frac{1}{2\Pi i} \oint_C \frac{e^{z}}{z^2(z^2+2z+2)} dz$$
 around the circle with equation $|z|=3$. (10)

Q.8. (a) Expand
$$f(x) = x^2$$
; $0 < x < 2\Pi$ in a Fourier series if period is 2Π . (10)

(b) Show that
$$\int_{0}^{\infty} \frac{\cos x \, dx}{x^2 + 1} = \frac{\Pi}{a} e^{-x}; x \ge 0$$
 (10)

Q.9. (a) Let f(z) be analytic inside and on the simple close curve except at a pole of order m inside C. Prove that the residue of f(Z) at a is given

by
$$a_{-1} = \lim_{Z \to a} \frac{1}{(m-1)!} \frac{m^{-1}d}{dz^{m-1}} \{ (z-a)^m f(z) \}$$
 (10)

(b) If f(z) s analytic inside a circle C with center at a, then for all Z inside C.

$$f(z) = f(a) + f'(a)(z-a) + f''\frac{(a)}{2!}(z-a)^2 + f'''\frac{(a)}{3!}(z-a)^3 + \dots$$
(10)
