FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BPS-17 UNDER
 THE FEDERAL GOVERNMENT, 2010

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE: SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks.
 (ii) Use of Scientific Calculator is allowed.

(i) Attempt FIVE questions in all by selecting at least THREE questions from

SECTION - A

Q.1. (a) Let W be a subspace of a finite dimensional vector space V , then W is finite dimensional and $\operatorname{dim}(\mathrm{w}) \leq \operatorname{dim}(\mathrm{v})$. Also if $\operatorname{dim}(\mathrm{w})=\operatorname{dim}(\mathrm{V})$, then $\mathrm{V}=\mathrm{W}$.
(b) Let $\mathrm{V} \& \mathrm{~W}$ be vector space and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{w}$ be a linear if V is finite dimensional, then nullity $(\mathrm{T})+\operatorname{rank}(\mathrm{T})=\operatorname{dim} \mathrm{v}$
(10)
Q.2. (a) Show that there exist a homomorphism from S_{n} onto the multiplication group $\{-1,1\}$ of 2 elements ($\mathrm{n} \geq 1$).
(b) If H is the only subgroup of a given finite order in a group G . Prove that H is normal in G.
(c) Show that a field K has only two ideals (namely K \& (o)).
Q.3. (a) Find all possible jordan canonical forms for 3×3 matrix whose eiganvalues are $-2,3,3(\mathbf{1 0})$
(b) Show that matrix $\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$
is diagonalizable with minimum calculation
Q.4. (a) Every group is isomorphic to permutation group
(b) Show that for $n \geq 3 \mathrm{Z}\left(\mathrm{s}_{\mathrm{n}}\right)=\mathrm{I}$
(c) Let A , B be two ideal of a ring, then $\frac{A+B}{A}=\frac{B}{A \cap B}$.
Q.5. (a) Verify Cayley - Hamilton theorem for the matrix

$$
\mathrm{A}=\left[\begin{array}{rrr}
0 & 1 & 2 \tag{7}\\
2 & -3 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

(b) Prove that ring $\mathrm{A}=\underset{1}{Z}$, the set of all integers is a principal ideal ring.
(c) Under what condition on the scalar, do the vectors $(1,1,1),\left(1, \xi, \xi^{2}\right),\left(1,-\xi, \xi^{2}\right)$ form basis of c^{3} ?

SECTION - B

Q.6. (a) Show that T.N. $=0$ for the helix
$\mathrm{R}(\mathrm{t})=(\mathrm{a} \cos \mathrm{wt}) \hat{z}+(\mathrm{a} \sin \mathrm{wt}) \hat{j}+(\mathrm{bt}) \hat{k}$
(b) The vector equation of ellipse $: \mathrm{r}(\mathrm{t})=(2 \cos \mathrm{t}) \hat{i}+(3 \operatorname{Sint}) \hat{j} ;(0 \leq t \leq 2 \Pi)$ Find the eurvature of ellipse at the end points of major \& minor axes.
Q.7. (a) Discuss \& sketch the surface
(b) Show that an equation to the right circular cone with vertex at 0 , axis oz \& semi vertical angle \propto is $x^{2}+y^{2}=z^{2} \tan ^{2} \propto$
Q.8. (a) Show that hyperboloids of one sheet and hyperbolic parabolas are ruled surface. (6+6)
(b) Find an equation of the plane which passes through the point $(3,4,5)$ has an x-intercept equal to -5 and is perpendicular to the plane $2 x+3 y-z=8$.

FEDERAL PUBLIC SERVICE COMMISSION
 COMPETITIVE EXAMINATION FOR
 RECRUITMENT TO POSTS IN BPS-17 UNDER
 THE FEDERAL GOVERNMENT, 2010

Roll Number

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS
MAXIMUM MARKS:100

NOTE: | SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL |
| :--- |
| marks. |
| (ii) Use of Scientific Calculator is allowed. |

SECTION - A

Q.1. (a) If f is continuous on [a,b] and if \propto is of bounded variation on [a,b], then $\mathrm{f} \in R(\propto)$ on [a, b] i.e. f is Riemann - integrable with respect to \propto on $[\mathrm{a}, \mathrm{b}]$
(b) Let $\sum a_{n}$ be an absolutely convergent series having sum S. then every rearrangement of $\sum a_{n}$ also converges absolutely \& has sum S.
Q.2. (a) For what +ve value of $\mathrm{P}, \int_{0}^{1} \frac{d n}{(1-\mathrm{x})^{p}}$ is convergent?
(b) Evaluate $\int_{1}^{5} \frac{d x}{\sqrt[3]{x-2}}$
Q.3. (a) Find the vertical and horizontal asymptotes of the graph of function:

$$
\begin{equation*}
f(x)=(2 x+3) \sqrt{x^{2}-2 x+3} \tag{10}
\end{equation*}
$$

(b) Let (i) $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{(x+2)(x-1)}{(x-3)^{2}}$
(ii) $\mathrm{y}=\mathrm{f}(\mathrm{x})=\frac{(x-1)}{(x+3)(\mathrm{x}-2)}$

Examine what happens to y when $\mathrm{x} \rightarrow-\infty \& x \rightarrow+\infty$
Q.4. (a) Find a power series about 0 that represent $\frac{x}{1-x^{3}}$
(b) Let \sum_{n} be any series, Justify.
(i) if $\operatorname{Lim}_{n \rightarrow \infty}\left|\frac{S n+1}{S n}\right|=\mathrm{r}<1$, then \sum_{n}^{s} is absolutely convergent.
(ii) if $\operatorname{Lim}_{n \rightarrow \infty}\left|\frac{S n+1}{S n}\right|=\mathrm{r}$ and $(\mathrm{r}>1$ or $\mathrm{r}=\infty)$, then S_{n}^{S} diverges.
(iii) if $\operatorname{Lim}_{n \rightarrow \infty}\left|\frac{S n+1}{S n}\right|=1$, then we can draw no conclusion about the convergence or divergence.
Q.5. (a) Show that $\int_{0}^{\Pi 12} \operatorname{Sin}^{2 m-1} \theta \cos ^{2 \mathrm{n}-1} \theta \mathrm{~d} \theta=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{2 \Gamma(m+n)} ; m, n>0$
(b) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)} ; m, n,>0$
Q.6. (a) Let A be a sequentially compact subset of a matrix space X. Prove that A is totally bounded.
(b) Let A be compact subset of a metric space (X, d) and let B be a closed subset of X such that $\mathrm{A} \cap \mathrm{B}=\Phi$ show that $\mathrm{d}(\mathrm{A}, \mathrm{B})>0$

SECTION - B

Q.7. (a) Show that if $\tan Z$ is expanded into Laurent series about $Z=\frac{\Pi}{2}$, then
(i) Principal is $\frac{-1}{z-\Pi / 2}$
(ii) Series converges for $0<\left|Z-\frac{\Pi}{2}\right|<\frac{\Pi}{2}$
(b) Evaluate $\frac{1}{2 \Pi i} \oint_{C} \frac{e^{z t}}{\mathrm{z}^{2}\left(z^{2}+2 z+2\right)} d z$ around the circle with equation $|\mathrm{z}|=3$.
Q.8. (a) Expand $f(x)=x^{2} ; 0<x<2 \Pi$ in a Fourier series if period is 2Π.
(b) Show that $\int_{0}^{\infty} \frac{\operatorname{Cos} x d x}{x^{2}+1}=\frac{\Pi}{a} e^{-x} ; x \geq 0$
Q.9. (a) Let $f(z)$ be analytic inside and on the simple close curve except at a pole of order m inside C. Prove that the residue of $f(Z)$ at a is given
by $a_{-1}=\operatorname{Lim}_{z \rightarrow a} \frac{1}{(m-1)!} \frac{{ }^{m-1} d}{d z^{m-1}}\left\{(z-a)^{m} f(z)\right\}$
(b) If $\mathrm{f}(\mathrm{z}) \mathrm{s}$ analytic inside a circle C with center at a , then for all Z inside C .
$f(z)=f(a)+f^{\prime}(a)(z-a)+f^{\prime \prime} \frac{(a)}{2!}(z-a)^{2}+f^{\prime \prime \prime} \frac{(a)}{3!}(z-a)^{3}+\ldots$.

