# FEDERAL PUBLIC SERVICE COMMISSION 

# COMPETITIVE EXAMINATION FOR <br> RECRUITMENT TO POSTS IN BS-17 <br> UNDER THE FEDERAL GOVERNMENT, 2011 

Roll Number

PURE MATHEMATICS, PAPER-I

## TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100
NOTE: (i) Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii) Use of Scientific Calculator is allowed.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.

## SECTION - A

Q.1. (a) Prove that both the order and index of a subgroup of a finite group divide the order of the
group.
(b) Define cyclic group. Also prove that every cyclic group is abelian.
(c) Define order of a permutation in $S_{n}$. Find the order of $\alpha=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$
Q.2. (a) Let $\phi$ be a homomorphism of a group G onto another group H with Kernel K. Prove that $G / K$ is isomorphic to H .
(b) Show that the vectors $(3,0,-3),(-1,1,2),(4,2,-2)$ and $(2,1,1)$ are linearly dependent over R .
Q.3. (a) Define the dimension of a vector space V over a field F . Also prove that all basis of a finite dimensional vector space contain the same number of elements.
(b) A linear transformation $T: U \rightarrow V$ is one -to-one iff $\mathrm{N}(\mathrm{T})=\{0\}$.
Q.4. (a) Examine the following system for a non-trivial solution:

$$
\begin{array}{ll}
x_{1}-x_{2}+2 x_{3} & +x_{4}=0 \\
3 x_{1}+2 x_{2} & +x_{4}=0 \\
4 x_{1}+x_{2}+2 x_{3} & +2 x_{4}=0 \tag{10}
\end{array}
$$

(b) Show that $\bar{Z}_{3}=\{\overline{0}, \overline{1}, \overline{2}\}$ form finite field with addition and multiplication of residue classes modulo P .
Q.5. (a) Let V be a vector space of $\mathrm{n}-$ square matrices over a field R . Let U and W be the subspaces of symmetric and anti symmetric matrices respectively. Then show that $\mathrm{V}=\mathrm{U} O \mathrm{~W}$.
(b) Let A and B be matrices of order 6 such that $\operatorname{det}\left(\mathrm{AB}^{2}\right)=72$ and $\operatorname{det}\left(\mathrm{A}^{2} \mathrm{~B}^{2}\right)=144$. Find $\operatorname{det}(\mathrm{A})$ and $\operatorname{det}\left(\mathrm{AB}^{6}\right)$

## $\underline{\text { SECTION - B }}$

Q.6. (a) Sketch the curve $r^{2}=a^{2} \cos 2 \theta, \quad a>0$.
(b) Find the tangent and the normal to the circle $\mathrm{x}=\mathrm{a} \cos \theta, \mathrm{y}=\mathrm{a} \sin \theta$ at the point $\mathrm{P}(\mathrm{a} \cos \alpha$, a $\sin \alpha$ ).
Q.7. (a) Find the Pedal equation of the parabola $y^{2}=4 a(x+a)$
(b) Find the equations for a straight line passing through the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right), P_{2}\left(x_{2}, y_{2}, z_{2}\right)$.

Find the co-ordinates of the point where this line cuts the yz-plane.
Q.8. (a) Determine the curvature of the $\operatorname{cycloid} \mathrm{x}=\mathrm{a}(\mathrm{t}-\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1-\cos \mathrm{t})$ at the point $(\mathrm{x}, \mathrm{y})$.
(b) Find the equation of the plane which passes through the point $(3,4,5)$ has an
$x$ - intercept equal to -5 and is perpendicular to the plane $2 x+3 y-z=8$.

COMPETITIVE EXAMINATION FOR
RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2011
Roll Number

## PURE MATHEMATICS, PAPER-II

## TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100
NOTE: (i) Attempt FIVE questions in all by selecting THREE questions from SECTION - A and TWO questions from SECTION - B. All questions carry equal marks.
(ii) Use of Scientific Calculator is allowed.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.

## SECTION - A

Q.1. (a) Prove that every non-empty set of real numbers that has an upper bound also has an supremum in R .
(b) If $\boldsymbol{x} \in \boldsymbol{R}$, set of real numbers, then there exists $\mathbf{n} \in \mathbf{N}$ such that $\mathbf{x}<\mathbf{n}$.
Q.2. (a) Define continuity of a function at a point and also prove that if $\mathbf{f}$ and $\mathbf{g}$ be functions on $\mathbf{A}$
to $\boldsymbol{R}$, where $\mathbf{A} \subseteq R$ then $\mathbf{f}+\mathbf{g}$ and $f g$ are continuous at $\mathbf{C}$.
(b) If $\mathbf{f}: \mathbf{I} \rightarrow \mathbf{R}$ is differentiable at $\mathbf{C} \in \mathbf{I}$, then f is continuous at $\mathbf{C}$.
Q.3. (a) Evaluate $\int_{1}^{5} \frac{d x}{\sqrt[3]{x-2}}$.
(b) (i) Define Complete metric space.
(ii) Prove that a sequence of real numbers is convergent iff it is a Cauchy sequence. This
Q.4. (a) Let ( $\mathbf{x}, \mathbf{d}$ ) be a matric space and $\mathbf{A}$ a subset of $\mathbf{X}$. Then prove that
(i) Interior $\boldsymbol{A}^{\circ}$ of A is an open subset of $\mathbf{X}$.
(ii) $\quad \boldsymbol{A}^{\circ}$ is the largest subset of $\mathbf{X}$ contained in $\mathbf{A}$.
(b) State and prove Mean value theorem.
Q.5. (a) If $\sum \boldsymbol{a}_{n}$ converges absolutely then $\sum a_{n}$ converges.
(b) Find the area enclosed by the parabola $y^{2}+\mathbf{1 6 x}-\mathbf{7 1}=\mathbf{0}$ and the line $4 \mathrm{x}+\mathrm{y}+\mathbf{7}=\mathbf{0}$

## SECTION - B

Q.6. (a) Let $Z=(\cos \theta+\boldsymbol{i} \operatorname{Sin} \theta)$. Then prove that $Z^{\boldsymbol{n}}=\boldsymbol{\operatorname { C o s }} \boldsymbol{n} \theta \boldsymbol{i} \operatorname{Sin} \boldsymbol{n} \theta$ for all n .
(b) Using De Moivre's Theorem evaluate $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^{6}$.
Q.7. (a) Expand $\mathbf{f}(\mathbf{x})=\mathbf{x}^{2}, \mathbf{0}<\mathbf{x}<\mathbf{2} \pi$ in a Fourier series if period is $2 \pi$.
(b) If $\mathrm{f}(\mathrm{z})$ is analytic inside a circle C with centre at a, then for all Z inside C
$f(z)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+\ldots$
Q.8. (a) Evaluate the integral by using Cauchy integral Formula

$$
\begin{equation*}
\int_{c} \frac{(4-3 z) d z}{z(z-1)(z-2)} \quad \text { where } \mathrm{C} \text { is a circle }|z|=3 / 2 \tag{10}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{1-2 p \operatorname{Cos} \theta-p^{2}}=\frac{2 \pi}{1-p^{2}} \tag{10}
\end{equation*}
$$

