FEDERAL PUBLIC SERVICE COMMISSION

RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2011

COMPETITIVE EXAMINATION FOR Roll Number

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100

NOTE: (i)  Attempt FIVE questions in all by selecting THREE questions from SECTION — A and TWO
questions from SECTION — B. All questions carry equal marks.
(i) Use of Scientific Calculator is allowed.

(iii) Extra attempt of any question or any part of the attempted question will not be considered.
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SECTION - A

Prove that both the order and index of a subgroup of a finite group divide the order of the
group.
Define cyclic group. Also prove that every cyclic group is abelian.

1 2 3
Define order of a permutation in Sn . Find the order of a = (2 3 J

Let ¢ be a homomorphism of a group G onto another group H with Kernel K. Prove that
A is isomorphic to H.

Show that the vectors (3, 0, -3), (-1, 1, 2), (4, 2, -2) and (2, 1, 1) are linearly dependent over R.

Define the dimension of a vector space V over a field F. Also prove that all basis of a finite
dimensional vector space contain the same number of elements.

A linear transformation T :U —V is one —to-one iff N(T) ={0}.
Examine the following system for a non-trivial solution:
X, =X, +2X;  +X, =0
3X, +2X, +Xx, =0

4%, + X, +2X; +2X, =0

Show that Z, ={0, 1, 2}form finite field with addition and multiplication of residue classes
modulo P.

Let V be a vector space of n — square matrices over a field R. Let U and W be the subspaces of
symmetric and anti symmetric matrices respectively. Then show thatV =U O W.

Let A and B be matrices of order 6 such that det (AB®) = 72 and det (A?B?) = 144. Find

det (A) and det (AB°®)
SECTION-B

Sketch the curve r? =a%cos26, a>0.

Find the tangent and the normal to the circle x =a cosé@,y =asin @ at the pointP (acos «, a
sin a ).

Find the Pedal equation of the parabola y? = 4a(x + a)

Find the equations for a straight line passing through the points P, (X;, Y;,2,),P,(X,,Y,.,2,).
Find the co-ordinates of the point where this line cuts the yz-plane.

Determine the curvature of the cycloid x = a (t —sin t), y =a(1 — cos t) at the point (X,y).
Find the equation of the plane which passes through the point (3, 4, 5) has an

X — intercept equal to -5 and is perpendicular to the plane 2x + 3y —z = 8.
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FEDERAL PUBLIC SERVICE COMMISSION

RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT, 2011

COMPETITIVE EXAMINATION FOR Roll Number

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100

NOTE: (i)  Attempt FIVE questions in all by selecting THREE questions from SECTION — A and TWO
questions from SECTION — B. All questions carry equal marks.
(i) Use of Scientific Calculator is allowed.

(iii) Extra attempt of any question or any part of the attempted question will not be considered.
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SECTION -A

Prove that every non-empty set of real numbers that has an upper bound also has an supremum

in R.
If x eR, set of real numbers, then there exists n € N such that x < n.

Define continuity of a function at a point and also prove that if f and g be functions on A
to R, where Ac R then f + g and f g are continuous at C.

If f:1 > Risdifferentiable at C e I, then f is continuous at C.

dx
Yx-2
Q) Define Complete metric space.

(i) Prove that a sequence of real numbers is convergent iff it is a Cauchy sequence. This
theorem is not in metric space, for justification give one example.

Let (x, d) be a matric space and A a subset of X. Then prove that

5
Evaluate j
1

Q) Interior A" of A is an open subset of X.

(i) A’is the largest subset of X contained in A.
State and prove Mean value theorem.

If Zan converges absolutely then Zan converges.
Find the area enclosed by the parabola y* +16x —71=0 and the line 4x+y+7=0
SECTION-B

Let Z =(cosé + i Sin@). Then prove that Z" =Cosn@ i Sinng forall n.

J3+i

Expand f(x) = x*, 0 <x < 27 ina Fourier series if period is 2 7 .
If f(z) is analytic inside a circle C with centre at a, then for all Z inside C

.\ 6
Using De Moivre’s Theorem evaluate [\/§_ I] :

f(z)= f(a)+ f'(a)(z—a)+ f Z(Ia)(z—a)2 + ...
Evaluate the integral by using Cauchy integral Formula
(4—32)dz . . - 3
—————— whereCisacircle |z| = .
gz(z—l)(z—Z) ’ ’ A
2z
Prove that | a6 on

0 1—-2pCosf — p? T1- p?’
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