FEDERAL PUBLIC SERVICE COMMISSION

(b) If

TIME ALLOWED: THREE HOURS

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

MAXIMUM MARKS: 100

PURE MATHEMATICS, PAPER-I

TIME ALLOWED. TIREE HOURS MAXIMUM MARKS. 100						
NOTE	Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Attempt FIVE questions in all by selecting THREE questions from SECTION-A and questions from SECTION-B . ALL questions carry EQUAL marks.					
	(iii) (iv)	Extra attempt of any question or any part of the attempted question will not be considered Use of Scientific Calculator is allowed.	ered.			
	SECTION-A					
Q. 1.	(a)	Let H be a normal subgroup and K a subgroup of a group G . Prove that HK is a	(12)			
		subgroup of G and $H \cap K$ is normal in K and $\frac{HK}{H} \cong \frac{K}{H \cap K}$.	(12)			
	(b)	Show that number of elements in a Conjugacy class <i>Ca</i> of an element ' <i>a</i> ' in a group <i>G</i> is equal to the index of its normaliser.	(8)			
Q. 2.	(a)	Prove that if G is an Abelian group, then for all $a,b \in G$ and integers n , $(ab)^n = a^n b^n$.	(6)			
	(b)	Show that subgroup of Index 2 in a group G is normal.	(7)			
	(c)	If <i>H</i> is a subgroup of a group <i>G</i> , let $N(H) = \{a \in G \mid aHa^{-1} = H\}$ Prove that $N(H)$ is a subgroup of <i>G</i> and contains <i>H</i> .	(7)			
Q. 3.	(a)	Show that set C of complex numbers is a field.	(6)			
	(b) (c)	Prove that a finite integral domain is a field. Show that $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5\}$ is a single probability and $\overline{Z} = \{0, 1, 2, 3, 4, 5, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	(6) (8)			
	(C)	Show that $\overline{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is a ring under addition mod 6 and multiplication mod 6 but not a field. Find the divisors of Zero in \overline{Z}_6 .	(6)			
		o but not a field. Find the divisors of Zero in $\mathbf{\Xi}_6$.				
Q. 4.	(a)	Let F be a field of real numbers, show that the set V of real valued continuous functions on the closed interval $[0,1]$ is a vector space over F and the subset Y of V	(10)			
	(b)	containing all functions whose nth derivatives exist, forms a subspace of V. Prove that any finite dimensional vector space is isomorphic to F^n .	(10)			
Q. 5.	(a) (b)	State and prove Cayley-Hamilton theorem. Use Cramer's rule to solve the following system of linear equations: $x + y + z + w = 1$	(10) (10)			
		x + 2y + 3z + 4w = 0				
		x + y + 4z + 5w = 1				
		x + y + 5z + 6w = 0				
		SECTION-B				
Q. 6.	(a)	Prove that an equation of normal to the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ can be written in the	(10)			
		form: $y \cos \theta - x \sin \theta = a \cos 2\theta$				
		Hence show that the evolute of the curve is				
		$(x+y)^{2/3} + (x-y)^{2/3} = 2a^{2/3}$				

are radii of curvature at the extremities of any chord of the Cardioid

 $r = a(1 + Cos\theta)$ which passes through the pole, then prove that

Page 1 of 2

(10)

PURE MATHEMATICS, PAPER-I

Q. 7. (a) Find an equation of the normal at any point of the curve with parametric equations: $x = a(\cos t + t \sin t), y = a(\sin t - t \cos t).$ (10)

Hence deduce that an equation of its evolute is $x^2 + y^2 = a^2$.

- (b) Find equations of the planes bisecting the angle between the planes 3x + 2y 6z + 1 = 0 and 2x + y + 2z 5 = 0.
- Q. 8. (a) Define a surface of revolution. Write equation of a right elliptic-cone with vertex at origin. (6)
 - **(b)** Identify and sketch the surface defined by $x^2 + y^2 = 2z z^2$. **(6)**
 - (c) If y=f(x) has continuous derivative on [a,b] and S denotes the length of the arc of y=f(x) between the lines x=a and x=b, prove that

$$S = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \ .$$

Find the length of the parabolas $y^2 4ax$

- (i) From vertex to an extremity of the latus rectum.
- (ii) Cut off by the latus rectum.

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

PURE MATHEMATICS, PAPER-II

TIME	EALL	OWED: THREE HOURS MAXIMUM MARKS	S: 100	
NOT	(ii) (iii)	Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. I Attempt FIVE questions in all by selecting THREE questions from SECTION-A and questions from SECTION-B . ALL questions carry EQUAL marks. Extra attempt of any question or any part of the attempted question will not be considered.	TWO	
	(iv)	Use of Scientific Calculator is allowed.		
		SECTION-A		
Q. 1.	(a)	State and prove Taylor's theorem with Cauchy's form of remainder.		
	(b)	Evaluate (i) $\lim_{x\to 0} \left(\frac{1}{x}\right)^{\tan x}$ (ii) $\int e^{ax} \sin(bx+c)dx$	(6)	
	(c)	Show that $\int_{0}^{\pi/2} \sin^{p} x \cos^{q} x dx = \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{2\Gamma\left(\frac{p+q}{2}+1\right)}$	(6)	
Q. 2.	(a)	curve.	(8)	
	(b)	Show that the parabola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has asymptotes $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$	(6)	
	(c)	Define extrema (local and global) of a function of two variables. Find three positive numbers whose sum is 48 and whose product is as large as possible.	(6)	
Q. 3.	(a)	Find the volume of the tetrahedron bounded by the coordinate planes and the plane	(8)	
		$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1, \text{a, } b, c > 0.$ Evaluate $\int_{0}^{\pi/2} \ell n(\sin x) dx$		
	(b)	Evaluate $\int_{0}^{\frac{\pi}{2}} \ell n(\sin x) dx$	(6)	
	(c)	Determine the values of x for which the power series $\sum_{n=2}^{\infty} \frac{x^n}{\ell n n}$ converges absolutely,	(6)	
		converges conditionally and diverges.		
Q. 4.	(a)	Define a metric on a non-empty set X . If d is a metric on X , show that if $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$ then d' is also a metric on X . Also write open and closed	5+3+2 =10)	
		balls (spheres) in the discrete metric space (X, do) with radius 1 and 1.1 centered at some $x \in X$.		
	(b)	Define limit point of a subset A of a metric space X. Show that an open sphere	(10)	

containing a limit point x of A contains infinitely many points of A other than x.

PURE MATHEMATICS, PAPER-II

- **Q. 5.** (a) Show that R^n is a complete metric space under the metric defined by $d(x,y) = \sqrt{\sum_i (\xi_i \eta_i)^2}, \ x, y \in R^n$
 - Where $x = (\xi_1, \xi_2, ..., \xi_n)$ and $y = (\eta_1, \eta_2, ..., \eta_n)$
 - (b) Show that a function $f: (X.d) \to (Y, d')$ is continuous if and only if for an open subset V of Y, $f^{-1}(V)$ is an open subset of X.
 - (c) Find the radius of convergence and interval of convergence of the power series: (6)

$$\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n+1} \left(x+1\right)^{2n}}{\left(n+1\right)^2 \, 5^n}$$

SECTION-B

Q. 6. (a) If C is a continuous curve and f(z) is defined on each point of C, then prove that

$$\left| \int_{C} f(z)dz \right| \le ML \tag{10}$$

Where $M = max | f \neq and L$ is length of curve C.

(b) Suppose f(z) = U(x, y) + iV (x,y) is differentiable at a point z = x + iy, then at z the first order partial derivatives of U an V exist and satisfy Cauchy-Reiman equations: $\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x}.$

Verify Cauchy-Reiman equations for the function $f(z) = e^{-x} \cos y - i e^{-x} \sin y$.

- Q. 7. (a) Define singularity of a function f(z). Investigate for the pole, singularities and zeros, the function $f(z) = z^2$
 - (b) Let D be simply connected domain and f(z) be analytic in D. Let f'(z) exist and is continuous at each point of D then prove that $\int_{c} f(z)dz = 0$, where C is any closed

Contuor in D.

- (c) State De Moivre's theorem and hence prove that (8)
 - (i) $Cos 5\theta = 16Cos^3\theta 20Cos^2\theta + 5Cos\theta$

(ii)
$$Sin^n\theta = (-1)^{\frac{n-1}{2}} \frac{1}{2^{n-1}} \left[Sinn\theta - Sin(n-2)\theta + \frac{n(n-1)}{2} Sin(n-4)\theta - \dots \right]$$

- **Q. 8.** (a) Solve the equation x^{12} -1=0 and find which of its roots satisfy the equation $x^4+x^2+1=0$. (6)
 - (b) Show that multiplication of a vector z by $e^{i\alpha}$ where α is a real number, rotates the vector z counter clockwise through an angle of measure α .
 - (c) Sum the series $nSin\theta + \frac{n(n+1)}{2!}Sin2\theta + \frac{n(n+1)(n+2)}{3!}Sin3\theta + \dots$ (8)
