

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2015

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS		THREE HOURS	MAXIMUM MARKS = 100				
NOTE: (i)	Attempt ONLY FIVE questions in all, by selecting THREE questions from SECTION-I and TWO questions from SECTION-II. ALL questions carry EQUAL marks						
(ii)	All the parts (if any) of each Question must be attempted at one place instead of at different						
(iii) (iv)	places. Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must						
(v) (vi)	Extra at Use of (Extra attempt of any question or any part of the attempted question will not be considered. Use of Calculator is allowed.					
		<u>SEC</u>	TI ON-I				
Q.No.1.	(a)	Let H be a subgroup of normalizer of H in G (i.e	a group G . Prove that the e. N _c (H)) is a subgroup of G .	10			
	(b)	Prove that a group of p	rime order is cyclic.	10			
Q.No.2.	(a) (b)	Write three non-isomor Prove that a group <i>G</i> is group of automorphism	phic groups of order 12. isomorphic to a subgroup of is of G .	10 10			
Q.No.3.	(a)	Construct Cayley's table of	e for Multiplication Modulo 7	8 (4+3+1)			
	(b) (c)	$Z_7 - \{0\} = \{\overline{1}, \overline{2}, \overline{2}, \overline{2}\}$ Show that Z_7 is an inter- Cayley's table.) Is Z_7 a field? Justify you Give an example of zer $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{4}, \overline{5}\}$. Is Z_6 an integral domain What is FIELD EXTENSI Verify that the field $Q[v]$ extension of Q .	3 , 4 , 4 , 5 , 6 }. In gral domain. (You may use ur answer. o divisor in n? Justify your answer. ON? $\sqrt{5} = \{x + y\sqrt{5} : x, y Q\}$ is an	5 (2+1+2) 7			
Q.No.4.	(a)	Show that $W = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right\}$ the vector space $\mathcal{M}_2(\mathbb{R})$	$a, b, c \in \mathbb{R}$ is a subspace of consisting of all 2×2	10			
	(b)	Prove that if a subset $\{v_1, v_2, \dots, v_k \text{ is linear com vectors.}\}$	v_1, v_2, \cdots, v_k of a vector space then one vector among abination of the remaining	4			
	(c)	 (1) What is dimension of (2) Write a basis of ℝ³. (3) Is {(1,1,0), (1,1,2), (1,0) dependent or indepen (4) Is {(0,0,0), (1,1,2), (1,0) independent? Justify y 	$ℝ^3$. (1),(0,1,2)} ⊆ $ℝ^3$ linearly dent? Justify your answer. (1)} ⊆ $ℝ^3$ linearly dependent or your answer.	6 (1+1+2+2)			

Page 1 of 2

PURE MATHEMATICS, PAPER-I

Q.No.5.	(a)	Define eigen value of a square matrix. Find eigen values and eigen vectors of $A = \begin{bmatrix} 0 & 1 \\ 1 \end{bmatrix}$	10
	(b)	Find reduced echelon form of the matrix $A = \begin{bmatrix} 4 & 3 & 7 \\ 1 & 1 & 5 \\ 4 & 5 & 7 \end{bmatrix}$	10
	(c)	Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigen values of a square matrix $A = [a_{ij}]$. What are $ A $ and $trace(A)$ in terms of λ_i 's?	
		SECTION-II	
Q.No.6.	(a)	Find equations of tangent plane and normal line at a point (x_1, y_1, z_1) of ellipsoid $\frac{x^2}{x_1^2} + \frac{y^2}{x_1^2} + \frac{z^2}{x_1^2} = 1$	10
	(b)	4 9 4 - Find equation of the ellipse centered at the origin, a	5
		focus at (3, 0) and vertex at (3, 0).	
	(C)	Find the polar equation of a parabola $x = 8y^2$.	5
Q.No.7.	(a)	Find the equation of elliptic paraboloid $x = y^2 + z^2$	
	(b)	In spherical coordinates. Convert the following equation of quadratic surface to standard form. What is this surface? $4x^2+y^2+4z^2-16x-2y+17=4$	10
Q.No.8.	(a)	Find curvature of the space curve	10
		$\vec{r}(t) = 2t\hat{i} + t^2\hat{j} + \frac{1}{2}t^3\hat{k}$	
	(b)	(1) Find first fundamental form of the surface $\vec{r}(u,v) = (\cos u, \sin u, v)$	10 (6+4)
		(2) Write formulae for normal and Guassian curvature of a surface $\vec{r} = \vec{r}(u, v)$	
		······································	

PURE MATHEMATICS, PAPER-II

TIME ALL	OWED: 1	THREE HOURS	MAXIMUM MARKS = 100)		
NOTE: (i)	Attempt TWO qu	ONLY FIVE questions in a destions from SECTION-II.	all, by selecting THREE questions from SECTION-I and ALL questions carry EOUAL marks			
(iii)	All the places	All the parts (if any) of each Question must be attempted at one place instead of at different				
(iv) (v)	Candidat No Page/	Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed				
(vi) (vii)	Extra attempt of any question or any part of the attempted question will not be considered. Use of Calculator is allowed.					
Q. No. 1.	(a)	Use the Mean Value Theor $ sinx - siny \le x - y $ for any real number x and y	SECTION-I em to show that (10))		
	(b)	Use Taylor's Theorem to p lnsin(x+h) = lnsinx + h	rove that (10) $hcotx - \frac{1}{2}h^2csc^2x + \frac{1}{3}h^3cotxcsc^2x + \cdots$)		
Q. No. 2.	(a)	Evaluate $\lim_{x \to 0} \frac{\sin x - \ln(e^x \cos x)}{x \sin x}$. (8))		
	(b)	Find the equation of the asy	$ymptotes of \ 2xy = x^2 + 3. $ (6))		
	(c)	Evaluate the integral $\int_0^2 x^3$	$(\sqrt{2x+3})dx. \tag{6}$)		
Q. No. 3.	(a)	Verify that $f_{xy} = f_{yx}$ for th $f(x,y) = e^{xy} \cos(bx+c)$	e following function: (8))		
	(b)	Find the points of relative e	extrema for $f(x) = sinxcos2x$. (6))		
	(c)	Evaluate the limit $\lim_{x \to 0} \frac{1}{x}$	$\frac{\cos x}{x^2}$ (6))		
Q. No. 4.	(a)	Let $d: X \times X \to R$ be a met $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ is also a metric.	ric space. Then $d': X \times X \to R$ defined by (10))		
	(b)	Show that an open ball in n	netric space X is an open set. (5))		
	(c)	Show that convergent sequ	ence in a metric space is Cauchy sequence. (5))		
Q. No. 5.	(a)	Let (X, d) be a metric spa has non-empty intersection	ce, a subset A of X is dense if and only if A with any open subset of X .)		
	(b)	Determine whether the give $\sum_{n=1}^{\infty} \frac{(2n)!}{4^n}$	en series converges or diverges: (6))		
	(c)	Determine whether the give conditionally or diverges: $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(2n)!}.$	en series converges absolutely, converges)		

PURE MATHEMATICS, PAPER-II

(b)

SECTION-II

Q. No. 6.	(a)	Use De Moivre's Theorem to evaluate	$\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)$	6	(10)
-----------	-----	-------------------------------------	--	---	------

(b) Evaluate
$$\oint_C \frac{z+2}{z} dz$$
, where C is the circle $z = 2e^{i\theta}$ ($0 \le \theta \le 2\pi$). (10)

Q. No. 7. (a) Find the Laurent series that represents the function: (10) $f(z) = z^2 sin\left(\frac{1}{z^2}\right).$ (b) Evaluate the sum of the infinite series: (10) $cos\theta - \frac{1}{2}cos2\theta + \frac{1}{3}cos3\theta - \frac{1}{4}cos4\theta + \cdots.$

Q. No. 8. (a) Find the Fourier transform of :
(i)
$$f(t) = e^{-|t|}$$
 (ii) $f(t) = sin\alpha t^2$ (10)

Find the residue at
$$z = 0$$
 of the functions:
(i) $f(z) = \frac{1}{z+z^2}$ (ii) $f(z) = z\cos\left(\frac{1}{z}\right)$
(10)